
Department of Computer Science

University of British Columbia

Vancouver B.C., Canada

AN
....

ALGOL 68 COMPANION

J. E. L. PECK

Revised Preliminary Edition

Mach
Technical Report

'
.

I

1972

71•01

pmcjones
Sticky Note
J.E.L. Peck marked up the copy from which this was scanned for a possible future revision, using red ink and two sheets of paper inserted between pages 56 and 57.

An

ALGOL 68 COMPANION

J. E •. L. Peek

Department of Computer Science

University of British Columbia

Vancouver

Revised Preliminary Edition
!'larch 1972

An ALGOL 68 Companion

CONTENTS

Introduction

1 Denotations.

1.1 Language levels. 1.2 Objects. 1.3 Names. 1.4 variables. 1.5
Denotations. 1.6 Boolean denotations. 1.7 Integral denotations.
1.8 Real denotations. 1.9 Character denotations. 1.10 Modes.
1.11 String denotations. 1.12 Other denotations. 1.13 Program
example.

2 Some fundamental concepts.

2.1 Declarers. 2.2
elaboration of a
syntax of identity
extension. 2.9 An
2.11 References.
declarations. 2.14

Generators. 2.3 Local generators. 2.4 The
generator. 2.5 Identity declarations. 2.6 The
declarations. 2.7 Formal parameters. 2.8 An
assignation. 2.10 The syntax of assignations.

2.12 Dereferencing. 2.13 Initialized
Program example.

3 Unitary clauses.

3.1 Introduction. 3.2 Eases. 3.3 Identifiers. 3.4 Slices. 3.5
Multiple values. 3.6 Trimmers. 3.7 Calls. 3.8 Void cast packs.
3.q Cohesions. 3.10 Selections. 3.11 Formulas. 3.12
Confrontations. 3.13 Identity relations. 3.14 Casts. 3.15
Program example.

4 Clauses.

4.1 Conditional clauses. 4.2 Simple extensions of the
conditional clause. 4.3 Case clauses. 4.4 Repetitive statements.
4.5 Closed clauses. 4.6 Collateral phrases. 4.7 Serial clause s.
4.8 Program example.

5 Routine denotations and calls.

5.1 The parameter mechanism. 5.2 Routine denotations. 5.3 More
on parameters. 5.4 The syntax of routine denotations. 5.5 What
happened to the old call ty name?. 5.6 Program example.

6 coercion.

6.1 Fundamentals. 6.2 Classification of coercions. 6.3 Fitting.
6.4 Adjusting. 6.5 Adapting. 6.6 Syntactic position. 6.7
Coercends. 6.8 A significant example. 6.9 The syntactic machine.

2 An ALGOL 68 Companion

6.10 Balancing. 6.11 Soft balancing. 6.12 We::tk balancing. 6.13
Firm balancing. 6.14 Strong balancinJ. 5.15 Positions of
balancing. 6.16 Program example.

7 United modes.

7.1 United declarers. 7.2 Assignations with united destination.
7.3 Conformity relations. 7.4 Conformity and unions. 7.5
conformity extensions.

8 Formula5 and operators.

8.1 Formulas. 8.2 Priority declarations. 8.3 Operation
declarations. 8.4 Elaboration of operation declarations. H.5
Dyadic indications and operators. 8.6 Identification of dyadic
indications. 8.7 Identification of operators. 8.8 Elaboration of
formulas. 8. 9 Monadic operators. 8.10 Related modes. 8. 11 Pea no
curves. 8.12 Chinese rings.

9 The grammar.

9.1 The syntactic elements. 9.2 Two levels. 9.3 The metarules.
9.4 The hyper-rules. 9.5 A simple language. 9.6 How to read the
grammar. 9.7 The indicators.

10 Mode declarations

10.1 Syntax. 10.2 Development. 10.3 Infinite modes. 10.4
Shielding and showing. 10.5 Identification. 10.6 Equivalence of
mode indications. 10.7 Binary trees. 10.8 Insertion in a binary
tree . 10.9 Tree searching. 10.10 searching and inserting. 10.11
Tree walking. 10.12 A non recursive approach.

11 Easy transput

11.1 General remarks. 11.2 Print and read. 11.3 Transput types.
11.4 Standard output format. 11.5 Conversion to strings. 11.6
Standard input. 11.7 String to numeric conversion. 11.8 Simple
file anquiries. 11.9 Other files.

References.

Answers to Review Question5.

An

This book is not i1
language ALGOL 68. Th<
of the "Report on tl
hereinafter re .ferred 1
(see the references). Tl
document and it must,
precision in meaning. CE
their proper intent or
excessive amount of clo~
statute, the Report ~
were determined that, wh
to - a meanin g in a ca
beyond all possible dout
not some other meaning
student of law does not
statutes. Likewise, th
language may not be thr
student must be taugh
and the student of progr
information he needs fro
language.

D ur intention is th
stages, to the ideas
Report. since it is assu
(this book should not b
of the necessity for des
Our purpose will have
studying this book, put
the Report alone.

This approach means
the reader to try to exp
used in, say ALGOL 60 ,
language. ALGOL 68 has i 1
the concepts are new, an'
concepts in other lane
not available. We shall I
usinq only the termino :
this way the transition J
easier.

We adopt the same t)
whereby examples of tl
given in italic, e. g.,
notions (i.e., metasyn1
60, or nonterminals in tl
type font which is lat
and usually hyphenated. E
not unduly disturb the

An ALGOL 68 Companion 3

Introduction

This book is not intended as a complete description of the
language ALGOL 68. That description already exists in the form
of the "Report on the Algorithmic Langu~ge ALGOL 68",
hereinafter referred to as the "Report" and referenced by [R]
(see the references). The Report is, of course, a reference
document and it must, of necessity, strive for the utmost
precision in meaning. Certain sections, therefore, may yield
their proper intent only after what the reader may think is an
excessive amount of close scrutiny. But then, like any legal
statute, the Report should be read carefully, for the authors
were determined that, when the reader eventually gropes his way
to -a meaning in a carefully worded passage, it should yield,
beyond all possible doubt, the meaning which w~s intended, and
not some other meaning ~hich the reader may have had in mind. A
student of law does not learn the law by first studying the
statutes. Likewise, the best approach to a , new programming
language may not be through its defining document. The law
student must be taught how to find his way among the statutes
and the student of programming needs to be shown how to get the
information he needs from the defining document of a programming
language.

Our intention is therefore to introduce the reader, in easy
stages, to the ideas and the terminolcgy contained in the
Report. Since it is assumed that the Report is always at hand
(this book should not be read without it), we absolve ourselves
of the necessity fpr describing every detail of the language.
our purpose will have been fulfilled, if the reader can, after
studying this book, put it aside, and from that point onward use
the Report alone.

This approach means that it will not be in the interests of
the reader to try to explain ALGOL 68 in terms of the concepts
used in, say ALGOL 60, or those used in any other programming
language. ALGOL 68 has its own new terminology because many of
the concepts are new, and though there are similarities with the
concepts in other languages, usually the eiact counterpart is
not available. we shall therefore try to be meticulous about
using only the terminology which is employed in the Repcrt; in
this way the transition from the Companion to the Report will be
easier.

We adopt the same typographical devices as in the Report,
whereby examples of the ALGOL 68 representation language are
given in italic, e. g., DQ~~l!!! print ("algol.!.68") ~n.Qo, and
notions (i.e., metasyntactic variables, in the sense of ALGOL
60, or nonterminals in the sense of formal grammars) are in a
type font which is larger than normal, e.g., •serial-clause•,
and usually hyphenated. Experience shows that this practice does
not unduly disturb the eye on first reading. It has the

4 An ALGOL 68 Companion

advantage that closer examination can reveal whether a word is
used in the ordinary sense of the English language or whether it
is used in a technical sense. For example, if the reader wishes
to know the meaning of "formula", he will look it up in his
favourite dictionary; however, to find out about "•formula•" he
must look at the rule 8.4.1.a of the Report. This practice will
enable us to use words with a precision which would otherwise be
difficult to achieve. As with the Report, there are also other
words, like "name" or "mode" which are not piirt of the syntax,
but each is given a technical meaning. We shall use quotes, when
introducing the reader to these words, to alert him to the f~=t
that he is meeting a new word with a special meaning.

At the end of each chapter is a set of review questions,
the answers to which are provided in the final pages. Many of
these questions test the material as presenten in this text, but
others require a deeper study of some parts of the Report. We
have tried to provide references to the Report wherever these
may be needed.

Some of the earlier chapters of this text were read ind
corrected by Daniel Berry, Wendy Black, Hellmut Golde, Lamb e rt
Meertens, Tad Pinkerton, Helge Scheidig, Aad van Wijngaarden ~nd
many others who may forgive the lack of mention here. Their
assistance is gratefully acknowledged. Naturally the author is
responsible for any remaining imperfections in this preliminary
edition. He hopes that readers will communicate with him,
thereby helping to eliminate as many errors as possible from the
final edition.

This preliminary editicn is produced by a text formatting
program written by W. Webt at the University of British Columbia
for use with the TN print chain. This print chain introduces
certain restrictions, so me of which are exasperating (e.g.,
there is no genuine multiplication sign). To simulate the effect
of different type fonts, a bracketing scheme is used. ALGOL 68
external objects (program £ragmen ts) are represented thus

CQ~9l~ fg2± X ; X := 3. 1~ g~QC
ALGOL 68 internal objects (values) are represented thus

.true.
and paranotions and modes ~yntactic parts) are represented thus

•strong-unitary-real-clause•
This means that, e.g., a collection of three •identifiers• used
for illustration, should be written

cxo, oa1b2c3c, can identifiero
but it will be easier on the eye if we assume that

o, c
may be replaced by

so we shall generally use the more pleasing and less cluttered
form

ox, a1b2c3, an identifiero,
unless the context calls for greater clarity.

This edition is
correction of some err
planned for the end of
The author is grate
preliminary edition an
errors and suggestion~

An ALGOL 68 Companion 5

This edition is a reprint of the preliminary edition after
correction of some errors and misprints. Another edition is
planned for the end of 1972 and may contain additional chapters.
The author is grateful to those who sent corrections to the
preliminary edition and would appreciate further correction of
errors and suggestions for improvement.

6 An ALGOL 68 Companion

1 Denotations

1.1 Language levels

~ur purpose is to learn how to read ~nd write ALGOL 68
• programs•. one might suppose that

DQ~9l!! £~~1 X; X :=). n ~QD
is an ALGOL 68 •program•, because it is a valid ALGOL 60
• program• and, in a sense, this is the case. However, the
similarities between ALGOL 60 and ALGOL 68 begin and end just
about here, since
omypragram: (print { {{real lengths > 1 1 "multiple" "single") ,

" 1 precision~environment11)))o
is also, in the same sense, an ALGOL 68 •program•. ALGOL 68 is
not an extension of ALGOL 60, though the lessons learned in the
design and use of ALGOL 60 have contributed to the final sh1pe
of the new language. It has, in relation to its contemporariP-s,
a powerful synt~ctic structure, which enables the defining
document of the language to be kept to a minimum. This Companion
is an introduction to the language, which should be read only
with the defining document, the Report [R], re~dily at hand. For
example, the re~der should now turn to the Introduction in the
Report [R.O], to get some flavour of the new language.

In ALGOL 68 we may speak of •programs• in the "strict
language" and in the "extended language" [R.1.1.1.a]. The strict
language is that which agrees with the synt~x of the defining
document. In a natural language, like English, certain
abbreviations, su=h as "e.g.", are commonly accepted. We usually
write "e.g." rather than the longer words "for example", t:ut the
meaning is the same. The abbreviations of ALGOL 68, are known as
"extensions" (R.9]. The application of these extensions to the
strict language yields the extended language. This means that,
though •programs• may be written in the extended language, their
meaning will be explained in terms of the strict language.

Related to both of these is the "representation language".
The first example given above, is a representation [R.3. 1.1] of
a •particular-program• [R.2. 1.d] of ALGOL 68. We say that it i~
a representation because o~~g!!!o is a representation of the
•begin-symbol•, Df~~±o is a representation of the •real-symbol•
and even the point within o3. 14o is a representation of the
• pain t-symbol•. Thus, the example

DQ~9.!!! £~~± X ; X :=). 14 ~!!~D
{which happens to be written in the extended language), is a
representation of the following sequence of symbols

•begin-symbol, real-symbol, letter-x-symbol, go-on-symbol,
letter-x-symbol, becomes-symbol, digit-three-symbol, point­
symbol, digit-one-symbol, digit-four-symbol, end-symbol•.

We se~ at once, that it would be too tenious to write •programs•
or parts of •programs• without using the representations.
Nevertheless, the presence of the strict language, in which ~11
the terminals end in the word •symbol•, will make it easier for
us to formulate syntactic rules and to describe and to use the
syntax:.

1. 2 Objects

ALGOL 68 is desc
w hie h deals with t
"internal" objects an
external object is
marks which the progr
• Pro q r ~ m • [R • 2 • 1) an d
b~ts w~thin the comp
writes o3. 14o he ma
which is a •de~otatio
reflected in a cer
value, the particular
of computer and the i
seguence of symbols
arrangements of bits

There is an impo
and internal objects.
"possess" [R.2.2.2.d
object, the •denotati
which is a collect
speak of the internal
form which the intern
to the programmer. 1
the computer and by t
the compiler writer
means of a diagram a~

is suggested by a
possession by the dot

The reader shou !
quotes, some standarc
possible, reference1
effort will be made,
Report as possible
manner the reader maJ
about the language b;

The use of a d .
indicates that we ar1
is described by t ;
[R.1.1.6.c]). If the
an English dictionar

r

An ALGOL 68 Companion 7

1.2 Objects

ALGOL 68 is described in terms of an hypothetical computer
which deals with two kinds of "objects"[R.2.2.1]. These are
"internal" objects and "external" objects. Roughly speaking, an
external object is the sequence of symbols represented by the
marks which the programmer makes on his paper when . creating a
•proqram•[R.2. 1] and an internal object is an arrangement of
bits within the computer. For example, when the programmer
writes c3. 14c, he makes, from four symbols, an external· cbjecti
which is a •denotation•(R.S]. Within the computer this may be
reflected in a certain arrangement of bits, known as a real
value, the particular arrangement chosen depending on the kind
of computer and the implementer's whim. Thus, c3.14c, which is a
sequence of symbols[R.3.1], is an external object and the
arrangements of bits is the internal object.

There is an important relationship between external objects
and internal objects. One says that an external object may
"possess" [R.2.2.2.d] an internal object. Thus, the external
object, the •denotation• n3.14c, possesses an internal object
which is a collection of bits within the computer. We shall
speak of the internal object as a "real value" [R.2.2.3.aJ. The
form which the internal object takes is of no particular concern
to the programmer. It is decided for him by the manufacturer of
the computer and by the implementer of the language, i.e., by
the compiler writer. In this text we shall represent this by
means of a diagram as in figure 1.2, where the internal object

c3.14c

: (2)

r--i---,
I I (1)
L-----J

Fig. 1.2

is suggested by a rectangle as at 1 and the relationship of
possession by the dotted line at 2.

The reader should note that we have introduced, by means of
quotes, some standard terminology from the Report(R). Wherever
possible, references to the Report will be given and every
effort will be made, in what follows, to remain as close to the
Report as possible in the use of this terminology. In this
manner the reader may be encouraged to obtain more information
about the language by reading the Report itself.

The use of a different type font, such as in •denotation•, :
indicates that we are talking about an object in ALGOL 68 which
is described by the syntax of the language (see paranotions
fR.1.1.6.c]). If the same word occurs in normal type font, then
an English dictionary should be consulted for its meaning. ~

8 An ALGOL 68 Companion

1. 3 Names

Computers have a storage structure in which the memory is
regarded as consisting of small pieces, each usually called a
word or byte, with each piece being given a unigue address,
i,e., a means by which the computer can locate that word or
byte. In our hypothetical computer, this situation is modelled
by sayinq that the computer has "names" [R.2.2.3.5], each
n&meCl> referring to some value. When we say that a name
~~efers" [R.2.2.2.1) to a real value, we are modelling the
~ituation where the real value is an arrangement of bits which

_ : ts stored at a certain storage place or addres:. The name is
~ •thus the address of the place where the value 1s stored and the

value is the content of that storage place. We have now isolated
,:_ another kind of internal object, i.e., a "name", and wE note

·ttrat there is a relationship between two internal objects, viz.,
a name may "refer" to a value. In the diagrams a name will be

. ,' repre!sented as in figure 1.3 at 1 and the relationship of
). ·. '.

(1) 0 ,.-----,
l ; - ~ · o o------>-------~

0 (2) L _____ J

Fiq.1.3

_referring by a directed line as at 2. In p:tssing, we mention
that a name is also a value [R.2.2.3] and another name may refer
to it, but we shall return to this point later.

-· ··, T 4 Variables

Most programmers do not wish to work only with
•denotations• such as o3.14o, but also with •variabl e s•
[R.6.0.1.e] such as axe. In ALGOL 68, as in many other
lan guages, if a programmer wishes to consider oxn as a variable,
he writes a •declaration• [R.7.4.1), e.g., ofg!!l: xo. The effe ct
of this •declaration• is to allocate a storage place, i.E., to
create a name which may refer to a real value, this name being
possessed by cxo. In figure 1.4 the relationship of possession

DXD

: (1)

0 ,------,

o o---->-----1
0

l _____ J

Fig.1.4

is indicated by the dotted line at 1. It is important that this
n~me may not refer to a value of another mode (i.e., to a member
of another class of values), such as •boolean• or •character•,
for reasons of security in the elaboration (R. 1. 1.6) of
-~---

'J> except for .nil• (R.2.2.2.l)

•programs•. In this
so we leave the sub
the next chapter.

1. 5 Denotations

There are four
[R.2.2.3.1]. Thes
"character" values.
classes is known a
value is thus said
classes, i.e., fa
and •character• w
sequences of symb
are, ctrug, 12, 5.6
•denotations• in tu

1.6 Boolean denotat

This is the s
two values (interna
and •false.. Cons
possess them. Thes
•false-symbol•, c!
for further emphasi
possesses an intern

a value of mode •bo
statement applies t

The syntax of
supplies a start
description of the
rR.5.1.3.1.aJ

•boolean denotati
which may be rea
symbol• or a •false

1.7 Integral denota

An •integral-a
c000123c, is a s
•integral-denotatio
syntax rule (R.S.1.

•integral denotat
which means the sam

h
s
e
d
e

e
,f

)0

er

th
s•
er
e,
::t
to
ng

. on

his
her

An ALGOL 68 Companion 9

•programs•. In this chapter we are concerned with •denotations•,
so we leave the subject of •declarations• and •variables• for
the next chapter.

1.5 Denotations

There are four mutually exclusive classes of "plain" values
[R.2.2.3.1]. These are, "boolean", "integral", "real" and
"character" values. The property of belonging to one of these
classes is known as the "mode" [R.2.2.4. 1) of the value. A real
value is thus said to be of mode •real•. For each of these four
classes, i.e., for each of the modes •boolean, integral, real•
and •character• we have •denotations•, which are certain
sequences of symbols possessing values of that mode. Examples
are, atr.!!g, 12, 5.67c and o"w"o. We consider each of these
•denotations• in turn.

1.6 Boolean denotations

This is the simplest of the •plain-denotations•. There are
two values (internal objects) of mode •boolean•, viz., •true.
and •false.. consequently we need two external objects to
possess them. These are the •true-symbol•, c!I~ga and the
•false-symbol•, o!~!~gc. At the risk of tedious repetition, but
for further emphasis, we observe that the external object cii~~c
possesses an internal object, which is the boolean value .true•,

r--~--,
l•true•l
L-----J

Fig.1.6

(external)

(internal)

a value of mode •boolean• (see figure 1.6). Of course, a similar
statement applies to c!~12~c •

The syntax of •boolean-denotations• is very simple, and
supplies a starting point for a study of the syntacti=
description of the languag e. This is embodied in the rule
rR.5.1.3.1.a]

•boolean denotation :true symbol ; false symbol.• ,
which may be read as "a •boolean-denotation• may be a •true­
symbol• or a •false-symbol•"·

1. 7 Integral denotations

An •integral-denotation•, for example, o34o or cOo or
c000123c, is a sequence of •digit-tokens•. This means that an
•integral-denotation• is easy to recognise and to describe. Its
syntax rule (R.5.1.1.1.a] is

•integral denotation : digit token sequence.•
which means the same as the rule

10 An ALGOL 68 Companion

integral denotation : digit token ;
integral denotation, digit token.

The full explanation of how to use this syntactic method of
description will be found in Chapter 1 of the Report. It is
important that the reader should, at some time, master this
syntactic description method. For the moment we may be content
to know that this rule describes an •integral-denotation• as a
sequence of •digit-tokens•, a •digit-token• being represented by
oO, 1, 2, 3, 4, 5, 6, 7, 8o or o9c. rhe h.nguage makes no
restriction on the length of the sequence of •digit-tokens•,
although, in a particular implementation, such a restriction may
well exist.

An •integral-denotation•, of course, possesses an integral
value, as one might expect. Not surprisingly, the value
possessed by o000121c is •123•, which is equal to that possessej
by n123o.

1.8 Real denotations

There are two kinds of •real-denotation• [R.5.1.2]. Some
examples are: n3.14, .000123, 123.45e6, Se-16, 4.7591D12c(l>. We
classify the first two as •varia ble-point-numerals• and the
r emaining three as •floating-point-numerals•, the latter being
the kind of •real-denotation• likely to be used by the physicist
or engineer. This classification is stated [R.5.1.2.1.a] in the
rule

•real denotation : variable point numeral ;
floating point numeral.•

•Variable-point-numerals• have an optional •integral-part•, like
o121o, followed by a mandatory •fractional-ptrt• like c.14o or
o.000123o. This is expressed [R.5.1.2.1.b] in the rule

•variable point numeral :
integral part option, fractional part.•

Examples of •variable-point-numerals• are therefore o123.0,
3.456, • 12335o and o.00023o but not n1.o. The •integral-part­
option• means that the •integral-part• may be present or absent.
An explanation of the syntactic device involving the word
•option• is to be found in the rule [R.3.0.1.b]

•NOTION option : NOTION ; EMPTY.•
and the fact that any notion may repl~ce the rnetanotion
•NOTI3N•, but the casual reader need not concern himself yet
with these mysteries.

We complete the description of •variable-point-numerals• by
the two r u 1 es [R. 5. 1 • 2. 1 • c, d]

•integral part: integral denotation.
fractional part : point symbol, integral denotation. •

Because we have already seen the rule for •integral-denotation•
and can guess that the representation of the •roint-symbol• is
o.o, this syntax should now be clear.

< 1 > A superscript 1o is used here in place of a subscript 10
which is not available on the TN printer chain.

A •floating-po
like c123c or o123.4
ce+23, e2, e-16o or

•floating-point-nu
Examples of •floa
2.3e-4o and o.3e26c
for example, possess
number written in p
~o written for compu
1nput hardware to
part• [R.5.1.2.1.f]

•stagnant part : i
variable point n

Thus both o123o and
The •exponent-pa
[R. 5.1.2.1.g,h,i,3.0

•exponent part : t
times ten to the p

times ten to the
power of ten : plu
plusminus : plus s

The •times-ten-to-t
subscripted ten c1o
the •letter-e• is al
that the •plusminu
parts• are ce-5, e4,

To review the a
denotations•: c123.
that o123.o is not a
that it should no
representation of th
the same as that
permitted, ambiguiti
not a •real-denotati
•iden tifier•.

1.9 Character denota

Some •characte
"+ 11

, "3 "c and c""""t
understand, accordin

•character denotat
quote symbol, st

provided one can
[R.5.1.4.1.b]. Bowev
value which is posse
character •"•. [
denotations•, in sec
whereby the •quote
doubled is a convenj
available character

An ALGOL 68 Companion 11

A •floating-point-numeral• consists of ~ •stagnant-part•,
like o123o or c123.45c, followed by an •exponent-part•, like
ce+23, e2, e-16c or atosc. Its syntax is in the rule

•floating-point-numeral : stagnant part, exponent part.•
Examples of •floating-point-numerals• are therefore, c1e1,
2.3e-4o and c.3e26c but not c3.e14c. The •denotation• c.3e26c,
for example, possesses a real value, usually associated with the
number written in physics textbooks as .3*1026. It could not be
so written for computer input because of the inability of most
input hardware to accept superscripts. The rule for •stagnant­
part• [R.5.1.2.1.f] is

•stagnant part : integral denotation ;
variable point numeral.• ~

Thus both o123c and c123.45c are acceptable •stagnant-parts•.
The •exponent-part• is described in the rules
[R.5.1.2.1.g,h,i,3.0.4.c]

•exponent part : times ten to the power choice, power of ten.
times ten to the power choice

times ten to the power symbol ; letter e.
power of ten : plusminus option, integral denotation.
plusminus : plus symbol ; minus symbol.•

The •times-ten-to-the-power-symbol• is represented by the
subscripted ten atoa, but since this is not commonly available,
the •letter-e• is also permitted. The •plusminus-option• means
that the •plusminus• may be omitted. Examples of •exponent­
parts• are ce-5, e4, e+56c and ct02c.

To review the above, we give some more examples of •real­
denotations•: c123. 4, • 56789, 464. 64e-53c and c9871021o. Note
that c123.o is not a •real-denotation• and there is good reason
that it should not be. rhe explanation is to be found in the
representation of the •completion-symbol• [R.3.1.1.f], which is
the same as that of the •point-symbol•, so that, were c123.c
permitted, ambiguities would arise. Also, oe15c, for example, is
not a •real-denotation• because it might be confused with an
•identifier•.

1.9 Character denotations

Some •character-denotations• are [R.S. 1.4] c"a", "c", "$",
"+", ")"o and c""""o. All except the last appear easy enough to
understand, according to the rule [R.5.1.4.1.a]

•character denotation :
quote symbol, string item, quote symbol.• ,

provided one can guess the meaning of •string-item•
[R.5.1.4.1.b]. However, the •denotation• o""""o possesses the
value which is possessed by the •quote-image•. This value is the
character •"•· [R.5.1.4.2.a]. When we come to •string­
denotations•, in section 1. 11, we shall see that the device
whereby the •quote-symbol• within a •character-denotation• is
doubled is a convenience which enables every member of the
available character set to be in a string.

12 An ALGOL 68 Companion

1. 10 Modes

Values within the computer, considered up to now, have been
of four kinds, viz., truth values, integers, real numbers ~nd
characters. Each member of one of these classes is of the same
"mode" [R.2.2.4.1] as any other member of the same class. These
modes are •boolean, integral, real• and •character•,
respectively. If computing were restricted to these four modes,
it would te dull indeed. A useful computer lanyuaye needs to
consider values of other modes. For exam~le, the symbol
manipulator often considers values of mode •row of character•,
which he thinks of as character strings, and the numeri~al
analyst considers values of mode •row of row of real•, which he
thinks of as matrices of real values.

In ALGOL 68, a row of values of one same mode, known as a
multiple value [R.2.2.3.3], is also a value of an acceptable
mode. Thus, we may have values which are of the mode •row of
boolean, row of integral, row of real• or •row of =haracter•. In
the diagrams such a multiple value will be represented as in

r------~-----T------r------T------r------~-----,

I I I I I I I I
L------~-----~------i-----~------L------~-----~

Fig.1.10

figure 1.10. Many more modes may be considered; in fact, the
number of different modes is infinite. we shall not concern
ourselves here with this interesting point, nor shall we discuss
some of the other modes. our purpose is to roint out that •row
of character• is a mode. There are •denotations• for values of
this mode and we shall now consider them.

1.11 String denotations

The syntactic rule for •string-denotation• [R.5.3. 1.b) is
•row of character denotation : quote symbol,

string item sequence proper option, quote symbol. •
From what has gone before, the reader will surmise that the
following are examples of •string-denotations•: o"abc", "a+b",
"t his!..is!..a!..quot e~symbo 1!..'"' !.." o. Observe that in the strict
language, the representation of the •space-symbol• is o~o
fR.1.1.1.b]. The only feature in the above syntax, which we have

o" a be" c

~-----r-----T-----1
I •a• I •b• I •C• I
L---~-----~-----J

Fig. 1. 11

not yet encountered
explanation is to be

•NOTION LISr prope
[R.J.O.l.g). It mean
two members. The u
then, that the segue
members. This impl
but that c""c is. Si!
•c haracter-denota tioJ
unusual choice of
value which is of mot
represent it as in f ,
row of characters w i '

1.12 Other denotatio1

This discussion
68, but it is suJ
parts of the languagE
denotations• like
denotations• like
f R. 5. 2. 1], •routine-(
I a I b)) c [R. 5.
[R.5.5].

1.13 Program example

Though we are nc
helpful to inspect
ideas. The following
standard input file
arithmetic mean of tr
Comments are enclosed

c.Q~gj,g real s : = 0
ss :: 0 ¢for t
x tthe current

in! n := 0 tfor a c
~ni!~ ~ logical fil

(get (standin,
S +:= X ; SS

put(standout, ¢R.10
" •• mea n • = • 11

It ~~standard
sqrt((ss

Points of releva
•variables• cs, ss,
with the value zero.
three times and the
three •row-of-charact
are provided as ex
later chapters.

AD ALGOL b8 Companion 13

not yet encountered, is the use of the word •proper•. The ex~ct
explanation is to be found in the rule

•NOTION LIST proper : NOTION, LIST separator, NOTION LIST.•
[R.3.0.1.g). It means that the sequence must contain at least
two members. The use of the combination •proper option•, rnea~s
then, that the sequence may contain either zero or two or more
members. This implies that c"a"c is not a •string-denotation•,
but that c""c is. Since we have already seen that c"a"c is a
•character-denotation•, we can understand the reason for such an
unusual choice of syntax. A •string-denotation• possesses a
value which is of mode •row of character•. 3ur diagrams may
represent it as in figure 1.11. The value possessed by c""c is a
row of characters with no elements.

1.12 Other denotations

This discussion does not exhaust the •denotations• of ALGOL
68, but it is sufficient for us to go on to other elementary
parts of the languaqe. We shall return later to •long-integral­
denotations• like o1g~g Oc [R.5. 1.0.1.b], •long-real­
denotations• like o1Q~g • 1c, •bits-denotations• like cjQjc
[R.5.2.1], •routine-denotations• like o ((~~~1 ~,b) !~~1 : (a > b
1 a 1 b))c [R.5.4] and •format-denotations• like c$16x37d$c
[R.5.5].

1.13 Program example

Though we are not yet ready to write •programs•, it is
helpful to inspect one and perhaps therefrom to glean some
ideas. The following will read some number of values from the
standard input file and then print a count of the number, the
arithmetic mean of the values and their standard deviation.
Comments are enclosed by the symbol t or the symbol #.

c.Q~g.!!! !:~~1 s := 0 tfor the sum of the valuest,
ss := 0 tfor the sum of squarest,
x tthe current value¢;

!n! n := 0 ¢for a count of the number of values¢;
~n.!1~ ~logical file ended(standin) gQ

(get(standin, x) ¢R.10.5.2.2.bt;
S +:=X ; SS +:= X** 2 ; n +:= 1 ¢R.10.2.11.d,e¢);

put(standout, tR.10.5.2.1.bt ("count.!.=!..",n,
11 •• mea n • = • ", s I n ,
~~~~stan~aid.!.deviation£=.!."• 

sqrt((ss- s ** 21 n) 1 n) ¢R.10.3.bt)) 

Points of relevance to this chapter are that there are four 
•variables• cs, ss, xc and one, some of which are initialized 
with the value zero. Also, the •integral-denotation• cOo occurs 
three times and the •integral-denotation• clo, once. There are 
three •row-of-character- denotations•. References to the Report 
are provided as explanation of other points to be covered in 
later chapters. 



14 An ALGOL 68 Companion 

Review 1Juestions 

1.1 Language levels 

a) How does one recognize a terminal (R.1.1.2. ] in the syntax 
of ALGOL 68? 

b) Ar2 there two or three symbols of which the colon, c: c, is :1 

representation[ R.3.1.1 ]? 
c) Ar2 there any other representations which represent more than 

one •symbol• : R. 3.1. 1]? 
d) Is the mark"(" a representation of a •sub-symbol• or of an 

•open-symbol• or of both [R.3.1.1, 9.2.g]? 

1. 2 0 bj ects 

a) What kind of object i s possessed by the •denotation• c3.14c 
(R.2.2.2.d]? 

b) What object may possess a real value? 
c) Is c3.14c an internal object or an external object? 
d) Does c!r~~c possess atrue. or does •true. possess ci£~§c? 

1. 3 Names 

a) Can a real value refer to a name (R.2.2.3.5]? 
b) 
c) 
d) 
e) 

Can a name refer to a name? 
Is a name an external object? 
Can an external object possess 
Does an external object always 

1.4 Variables 

more than one name? 
possess a name? 

a) In the reach [ R.4.4.2.a] of D!~!!.! xo, can the name possessed 
by axe refer to an integral value? 

b) May c£g!!.! X, y, ZD be a •declaration• (R.9.2.c)? 

1.5 Denotations 

a) How many classes of plain values are there [ R.2.2.3.1 ]? 
b) Is there a class of plain values with finitely many members? 
c) What distinguishes classes of values [R.2.2.4.1.a]? 

a) 

b) 

1.6 Boolean denotations 

In the syntax, how should the syntactic marks 
"," be interpreted [R. 1.1.4]? 

Is •true. an internal object? 

1.7 Inteqral denotations 

..... . , 

a) Can two •integral-denotations• possess equal values? 
b) Is c-123D an •integral-denotation• [R.5.1.1.1]? 

..... . and 

c) Can a sequence of one thousand digits be an •integral­
denotation•? 

d) Does every •integral-denotation• possess a value 
r R. 5. 1. o. 2.bJ? 

1.8 Real denota 

a) Can two differen 
b) Is c1.o a •real-
c) Is o12o a •real-
d) Is o12e-4c a •re 
e) Is o-12e4c a •re, 

1. 9 Character d• 

a) Is o"""o a •char 
b) Does every •stri1 

1.10 ~odes 

a) How many differe1 
b) How many differe1 

1. 11 String den• 

a) Is c""""o a •str 
b) Is o 1111 o a •strin • 
C) what is the mode 

denotation•? 

1. 12 Other dena · 

a) Are the values 
same? 

b) What is the mode 
c) What is the mode 

1. 13 Program ex ; 

a) What is the mode 
b) What are the mode 
c) Does the example 
d) How many •integri 
e) Does the example 



tta x 

s a 

han 

an 

14o 

:;ed 

• ? 
) . 

nd 

1-

ue 

ln ALGOL 68 Co•panion 15 

1.8 Real denotations 

a) Can tvo different •real-denotations• possess equal values? 
b) Is o1.o a •real-denotation•? 
c) Is n12o a •real-denotation•? 
d) Is a12e-4o a •real-denotation•? 
e) Is n-12e4o a •real-denotation•? 

1.9 Character denotations 

a) Is o"""a a •character-denotation•? 
b) Does every •string-item• possess a character (R.5.1.4.2)? 

1.10 Modes 

a) Hov many different modes are there? 
b) Hov many different modes can a programmer specify? 

1.11 String denotations 

a) Is a""""o a •string-denotation•? 
b) Is n""o a •string-denotation•? 
c) What is the mode of the value possessed by a •string­

denotation•? 

1.12 Other denotations 

a) Are the values possessed by a!Qll~ Oo and c!Qgg 1Qgg Oa the 
same? 

b) What is the mode of the value possessed by cjQjo (R.5.2]? 
c) What is the mode of the value possessed by o$16x3zd$o? 

1.13 Program example 

a) What is the mode of the value possessed by "count~=~"? 
b) What are the modes of osn and cnn? 
c) Does the example in 1.13 contain a •real-denotation•? 
d) Hov many •integral-denotations• are there in the example? 
e) Does the example contain a •character-denotation•? 



16 An ALGOL 6B Companion 

2 Som e fundamental concepts 

2.1 Declarers 

In chapter 1 we found that each value within the computer 
is of a certain mode. (There is an exception, viz., the value 
•nil• fR.2.2.3.5.a), but we shall discuss this exception later.) 
Thus, there are values of •integral• mode, •real• mo1le, 
•character• mode, •row-of-character• mode, and so on. The 
pro g rammer needs to have some way of specifying modes, tecause 
when creating •variables• (R.6.0.1.e) he must help the computer 
to decide how much storage to allocate. The programmer specifies 
the modes by using •declarers• [R.7. 1 ]. 

There are five primitive [R.1.2.2.a) •declarers•. These a re 
cig.!c, which specifies the mode •integral•; crealo, which 
specifies the mode •real•; oboolo, which specifies the mode 
•boolean•; o~~~fc, which specifies- the mode •character• dod 
o.£~.I!!!~.!o, which specifies the mode •format• (of which we sh .1ll 
he ar mor e later). The mode of a •real- variable•, howeve:r, is 
•reference to real• a nd not •real•. This mode is specified by 
the • declarer• o_r~! f~~Jo. A •declarer• specifying the mode 
•row-of-real• is o[ )I~~Jo, or if actual bounds are required, 
then s ay, of 1: 10 ]E~~J:o. Th e mode of a real vector variatle is 
•re ference to row of real• and this mode is specified by a 
d eclarer like Df~! [ ]I~~lo or Df~f[ 1 :n ]I~~J:o. We see, therefor e , 
that other •declarers• may be built from the primitives by using 
the s ym bols Df~fo for •reference-to• and c( ]c for •row-ot•. 
Other possible prefixes are DffQg, ~.!I~~to and oyg!~go but th 2 se 
may also involve the use of the symbols o(o and o) o. 

This is not a full description of •declarers•, but enough 
for o ur present purpose. As a taste of what other •declarers• 
are poss ible, we list a few examples: 

ofgf £~! £~~1. [ 1:0 .£1g~J~h£f, E.I2£(fg~1)£~~1. [ 1:n)f2£~~t. 
E!Q£, ~.!fY~t(I~~! re, im), YDl2!!(.I~~J:, igt, QQQ!) o. 

2.2 Generators 

At the heart of ALGOL 6B is the notion •generator• 
fR.8.5.1]. There are two kinds of •generators•, •loc1.1-
gene rator• and •global-gene rator• [R.8.5.1.1.a]. Syntactically, 
a •local-generator• is a •local-symhol•, oJ,_2go, followed by a 
• declarer•, e.g., o12~ ig_!o. A •global-generator• is an optional 
•heap-symbol•, oh~!!QD, followed by a •declarer:•, e.g., o.h~i!E 
realo or crealo. The difference in semantics concerns the rnethoj 
~1-storage-iiiocation and particularly of storage retrieval. The 
inexperienced programmer is unlikely to make explicit use of 
•generators•, but •local-generators• appear implicitly in some 
frequ e ntly used •declarations•, so we shall introouce them now. 

2. 3 Local qenerators. 

The syntactic rule for •local-generator• might be written 
informally as: 

local generator : local symbol, actual declarer. 

but the strict syn 1 
other rules, coni 
observe. The rule j 

•reference to !Dr 
local symbol, a 

The feature to be r 
•MODE•, both to 
rule. A full descrj 
in the Report [R.1. 
explanation that t 
several rules of tt 
replace, consistent 
by a mode (one of t 
like •integral• or 
language. For examp 
the production rule 

•reference to rea 
local symbol, a 

If we replace it by 
•reference to boo 

local symbol, a 
This device, in th 
something about 
•generator• and the 
mode of a •genera 
mode of its •declar 
cbQ£ f~~Jc, its dec 
the generator, afte 
of mode •referenc 
the next section. 

2.4 The elaboration 

The "elaborati 
actions performed 
are explained in th 
We shall now exa 
•generator• [R.B.S. 
allocates computer 
This process is 

(ext1 

(intt 

language, that we w. 
diagram. we rna y pic 
~g!!Jo, as in figure 



An ALGOL 68 Companion 17 

but the strict syntactic rule fR.8.5.1.1.b], in common with many 
other rules, contains a feature which the reader should now 
observe. The rule is 

•reference to MJDE local generator 
local symbol, actual MODE declarer. • 

The feature to be noticed is the occurrence of the "metanotion" 
•tWDE•, both to the left and to the right of the colon in the 
rule. A full description of this two-level syntax is contained 
in the Report ( R. 1. 1 ). For the moment we may be content with the 
explanation that the use of this metanotion is a device whereby 
several rules of the language may be combined into one. If we 
replace, consistently throughout the rule, the metanotion •MODE• 
by a m:>de (one of the terminal productions [R.1.1.J.f] of •MODE• 
like •integral• or •real•), then we obtain a rule of the strict 
language. For example, if we replace •MODE• by •real•, we obt~in 
the production rule 

•reference to real local generator 
local symbol, actual real declarer.• 

If we replace it by •boolean•, we obtain the rule 
•reference to boolean local generator : 

local symbol, actual toolean declarer.• 
This device, in this rule, enables the syntax to tell us 
something about the relationship between the mode of a 
•generator• and the mode of its •declarer•. Specifically, the 
mode of a •generator• is always •reference to• followed by the 
mode of its •declarer•. In the example of the •local-generator• 
c1Q£ I~~!c, its declarer, ctg~!c, specifies the mode •real•, but 
the generator, after its elaboration, possesses a value (a name) 
of mode •reference to real•; but this is the subject matter of 
the next section. 

2.4 The elaboration of a generator 

The "elaboration" of a •program• consists of a sequence of 
actions performed by the hypothetical computer. These actions 
are explained in the sections, headed Semantics, in the Report. 
We shall now examine the effect of the elaboration of a 
•generator• fR.8.5.1.21. A •generator• creates a name, i.e., it 
allocates computer storage. This name then refers to some value. 
This process is so fundamental to the understanding of the 

(external) c!Q£ I~~!c (5) 

(internal) 
(4) 
(possess) 

o ( 1) (3) r------, (2) 
0 0-------->----~ 

o (refer to) L------.J 

Fig. 2. 4. a 

language, that we will attempt to make it clear by means of a 
diagram. we may picture the elaboration of the •generator• c1Q~ 
I~~!c, as in figure 2.4.a. In this figure, the name is at 1, the 



18 An ALGOL 68 Companion 

value to which it refers at 2, the relationship of reference at 
3, the relationship of possession at 4 and the external object 
at 5. The broken line then separates the external object from 
the two internal objects. The elaboration of the •local­
qenerator•, c!Qf ~~~!c, thus creates a name which refers to some 
real value. The external object, cloc realc, is then made to 
possess the name. This last action is-thus pictured at 4. The 
value referred to is some undefined real value. We shall see 
later that this value may be changed ("superseded" 
f R. 8. 3. 1. 2. a]) by ''assignment". 

2.5 Identity declarations 

•Generators• may occur in more than one context, but the 
most important context is the •identity-declaration• [R.7.4.1 ]. 
We give first an example of an easy •identity-declaration• 

7 containing no •generator•, ~· 
oint m = 4096c J . ' 

The effect of the elaboration of an •identity-declaration• i~c to 
make two different external objects possess the same a nteqljUD 
~ In the example at hand, we have an •integral-mode­
~ier•, orne, and an •integral-denotation•, c4096c. We have 
seen in chapter 1, that c4096c possesses an internal object, 
which is an integral value. This situation may be pictured, 

409 6c 

r-.l.---, 

1•4096•1 ,__ ____ __. 

Fiq.2.5.a 

c!Et. m = 4096c 

r------~ 
I •4 096 •I 
L--------1 

~--- ... 
1•4096•1 
l__ ___ _J 

Fig.2. 5. b 

before the elaboration of the •identity-declaration•, as in 
figur e 2.5.a. After the elaboration of the declaration, oint m = 
409 6c, the situation is as in figure 2.5.b, where ~m~ now 
possess es a new instance of the same integral value as that 
possessed by c4096c. It is important to note that cmc does not 
possess a name and, as a result, cmc may not appear as the 
•destination• of an •assignation•, as for example in om:= Oc. 
In fact, em := Oc would be just as improper as c4096 := Oo. The 
•identifier• erne is thus a •constant• [R.6.0.1.d]. 

Of greater interest is the declaration of a •variable•, of 
which 

cref real x = loc realc 
is an example. As we have--seen already--in 
programmer is permitted to write this in the 

creal xc 

r< 1-o't 
section ~· the 

extended form 

[R.9.2.a]. The first step in-the elaboration of this •identity­
declaration• is the elaboration of its •actual-rarameter•, which 
is c!Q£ £~~1c. we have seen, in 2.4, that this will make clo~ 
~~~!c possess a name which refers to some (undefined) real 
value. This stage is pictured in figure 2.5.c. After the

elaboration of tl
identifier• cxc pos~
cloc realc. The re
2~s:d.-Here, because
the •destination• of
the name refers may t

Fig.2.5.

(provided that it i
such as the one in fi
the fact that the na
•variable•, is unlike
the data area. It is
which may be in the d
be part of a machine
usually permitted t
essential that the re
violated. Thus the
to reach down to the
name in order to
refers and which can

The possession o
as though the name is
may not be unlocked.
changed, but withou
content of that cell
examined, as if throu

To recapitulate
declaration• makes it
that possessed by it
in both of the exampl
~g~!c.

2.6 The syntax of ide

We are perhaps
we have not yet exami
This might be describ

identity declaratio
formal parameter,

but the rule in the R1
•identity declarati

eguals symbol, ac
We see here again

7

An ALGOL 68 Companion 19

elaboration of the •declaration•, the •reference-to-real­
identifier• oxo possesses the same value as that possessed by
o!Q£ E~~lo. The result, in pictorial form, is shown in figure
2.5.d. Here, because cxo now possesses a name, it may be used as
the •destination• of an •assignation•, i.e., the value to which
the name refers may be superseded [R.8.3.1.2.a] by another value

0 0

0 c
0

0 0 0 0

o,.-----,
L~ I

o o,.-----,
L-->---~! I

L-----.J L------J

Fig.2.5.c Fig.2.5.d

(provided that it is of mode •real•). When examining diagrams,
such as the one in figure 2.5.c and d, we should keep in mind
the fact that the name possessed by an •identifier•, which is a
•variable•, is unlikely to be a piece of storage set aside in
the data area. It is rather the value to which this name refers
which may be in the data area. The name itself is more likely to
be part of a machine code instruction. Since programs are not
usually permitted to alter their own coded instructions, it is
essential that the relationship of possession should not be
violated. Thus the name possessed is never changed. If we want
to reach down to the data area, then we must make use of the
name in order to find that part of the data area to which it
refers and which can be changed (superseded).

The possession of a name confers a special privilege. It is
as though the name is the key to a storage cell without which it
may not be unlocked. When it is unlocked, the content may be
changed, but without this key, i.e., without the name, the
content of that cell may not be changed, though it may be
examined, as if through a window.

To recapitulate then, the elaboration
declaration• makes its •identifier• possess the
that possessed by its •actual-parameter•. This
in both of the examples o!Ei m = 4096c and D£~!
!~~!o.

2.6 The syntax of identity declarations

of an •identity­
same value as

is what occurred
!g~! X = !Q~

we are perhaps getting a little ahead of ourselves, since
we have not yet examined the syntax of •identity-declarations•.
This might be described informally by

identity declaration :
formal parameter, equals symbol, actual parameter.

but the rule in the Report [R.7.4.1.a] is
•identity declaration : formal MODE parameter,

equals symbol, actual MODE parameter.•
We see here again the use of the metanotion •MODE•, which

20 An ALGOL 68 Companion

enables one to condense many rules into one. The metanoticn must
be replaced consistently ty one of its terminal productions
fR.1.1.5.a], e.g., by •integral• or •reference to real•. Using
the latter replacement, we obtain the production rule
fR.1.1.2.c]

•identity declaration formal reference to real parameter,
eguals symbol, actual reference to real parameter.•

'f WO of the notions in this rule envelop [R.1.1.6.j] the mode
•reference to real•. In the •declaraticn• Of§f E~~1 x = !Q~
£ealo, the mode of the •gen e rator• oloc realo is •reference to
real• and that of the •formal-parameter;-oref real XD is also
• reference to real•. It follows from the -rule--on •form:il­
parameters• [R.5.ij.1.e], that oxo is then a •reference-to-real­
mode-identifier•.

2.7 Formal parameters

We must follow this a little further by examining the rule
for •formal-parameters• [R.5.ij.1.e) which is

•formal MODE parameter :
formal MODE declarer, MODE mode identifier.•

and in which the metanotion •MODE• appears three times. By
substitution we obtain the rule applicable to the •formal­
pa rame ter • D£gf E§~~! XC, ViZ. 1

•formal reference to real parameter :
f~rmal reference to real declarer,
reference to real mode identifier. •

The •formal-reference-to-real-declarer• is aref realo and the
•reference-to- real-mode-identifier• is oxn (R.ij~2~2]~--

2.8 An e xtension

The object
aref real x = lac realo

is a r e presentation of-a ~declaration•-in-the strict langua ge.
Although, as we have seen above, it enables one to explain the
meanin y of the •identity-declaration• clearly, it is rather much
t o write and would certainly not be popular with programmers. A
simil a r situation exist s with the elisions of a natural
lanqu a ge. It is well known that the sentence "Who's that?",
stand s for the sentence "Who is that?", and that the former is
used more often than the latter. Moreover, in explaining the
meanin g of the first sentence, we always use the second, strict
f o rm. S imilarly in AL GOL 68 we may write

n£g~! xn
to stand for

o£~f £~~1 x = loc realo
with the assurance that the meanin~-Is-~~e same [R.g.2.a] . rhe

,.----->------,
(1) I v

D~~f £g~1 X = 1Qf £g~lo
xxxxn xx xxxxx (2)

Fig.2.8

effect of this e
temptation to call i
parts which are unde
the •identifier• i
following symbol is
that in the exten
declarer• cref realo
•actual-declarer:;--o
remains. This is of
multiple values.

Another extens
e.g., a£~~1 x, £g~!

In the examples
Y I .!!!! i 1 j 1 n I [1 : 1
unless contradicted
have the mode •refer
•reference to integr
row of real•.

2.9 An assignation

We have seen b
which to unlock the
when an assignment i

(in the reach of
•assignation• [R.8
assignment (R.8.3.1.
is cxc, a •source
•becomes-symbol•, c
•destination• are
"collaterally" (R.6.
obtain the values

r-·

I
reference- to-re

: (3)

I
ox

: (
0

: •••••••••••••• 0 0 ·

0

•assignation• is the
to the name possesse
precisely, the name
(new instance) of th
An •assignation•, af

An ALGOL 68 Companion 21

effect of this extension [R.1.1.7] (one must resist the
temptation to call it a contraction) is that one may omit those
parts which are underlined with x•s in figure 2.8. and then move
the •identifier• in the manner indicated (provided that the
following symbol is c,c, c;c or c:=c). It is important to note
that in the extended •declaration• oreal xc, the •formal­
declarer• c£~! f~~!c (see figure 2.8 at 1)-Is omitted, but the
•actual-declarer• cf~~1c (see figure at 2) from the •generator•
remains. This is of significance when the •declarers• are for
multiple values.

Another extension, which we mention in passing, is that,
e.g., c£~~1 x, f~~! yo may be written o£~~! x, yo [R.9.2.c].

In the examples which follow, the •declarations• of~~! x,
y, .!n! i, j, n, (1 :10].£~.! x1, y1c will always be assumed. Thus,
unl~ss contradicted by another •dec laration•, cxc and c yo will
have the mode •reference to real•, ci, jo and cno th€ mode
•reference to integral• a~d ox1o and cy1o the mode •reference to
row of real•.

2.9 An assignation

We have seen before that a name is, as it were, a key with
which to unlock the value to which it refers. This key is n€eded
when an assignment is made. An external object of the form

DX := 3.14o
(in the reach of the •declaration• Df~~! xc), is an
•assignation• [R.8.3.1) and its elaboration involves an
assignment [R.8.3.1.2.b]. It consists of a •destination•, which
is axe, a •source•, which is c3.14o, and between the two a
•becomes-symbol•, o:=c. First, both the •source• and the
•destination• are elaborated in unspecified order, or
"collaterally" [R.6.2.2.a] (see figure 2.9 at 1), i.€., we
obtain the values possessed by them. The effect of the

••••••••••••••••••••• reference-to-real-assignation

r------------------L--r--------------,
I I I

reference-to-real-destination becomes-symbol real-source
I I I

ox := 3. 14c
: (3)

: (1) : (1)
o r-----, r--__.J...--,

: •••••••••••••• o a->-~ 1==========<=========1 I
0 L------J (2) L------J

Fig.2.9

•assignation• is the assignment of the value possessed by c3.14o
to the name possessed by cxc (see figure 2.9 at 2). ~ore
precisely, the name possessed by axe is made to refer to a copy
(new instance) of the value possessed by c3.14c [R. 8. 3. 1. 2.c,d].
An •assignation•, after ·its elaboration, possesses a value ana

22 An ALGOL 68 Companion

the value possessed is that of its •destination•, which is a
name (see figure at 3).

2.10 The syntax of assiqnations

We should now examine the syntax of •assignations•, in
particular, the rule

•reference to MODE assignation
reference to MODE destination, becomes symbol, MODE source.•

fR.H.3.1.1.a]. Remembering that the metanotion •MJDE• should be
replaced consistently by some mode, we replace it by •real• and
obtain the rule

•reference to real assignation :
reference to real destination,

becomes symbol(real source.•
The important point to notice about this rule, which is the rule
governing the object ox := 3.14o, is ~he fact that the mode
enveloped by the •destination• is •reference to rea1•, 11hile the
mode enveloped by the •source• is •real•. We see therefore, the
requirement that the •destination• must fOssess a name, while
the •source• need not. Moreover the mode of the •destination• is
always •reference-to• followed by the ~ode pf the •source•.
Finally, we note that the mode of the •assignation• itself, i~
the same as that of the •destination•, as might be expected from
the discussion in the last paragraph.

We may now examine the construction
oig! m = 4096 ; m := 4095o

and decide that om := 4095o cannot be an •assignation•, tecause
orne does not possess a name, i.e., its mode does not begin with
•reference-to•. In fact, the mode of omo is •integral•. We :1re
therefore justified in using the term •constant• [R.6.0. 1.d] for
the •identifier• orne.

2.11 References

These subtle distinctions between •constants• dnd
•variables•, the insistence on the difference in mode provided
by •reference-to• and the distinction between those values which
are names and those which are not, may s~em a high price to pay
for the understanding of a programming language. Nevertheless,
it is at the very heart of ALGOL 68 and should be understood
well before proceeding further. Moreover, we shall find later
that it pays a handsome dividend in chapter 5 when explaining
the parameter mechanism in •calls• [R. 8.6.2.2] of routines. Some
readers may be a little baffled and impatient for the reason
that many well known programming languages<•> appear either not
to make this distinction or to consider it of no importance.
Even mathematicians (but perhaps not logici:tns) are guilty of
slurring over the differences in meaning between o2.3 + 4.5o and
ox + yo. Ingrained habits of thouqht are difficui-t to dislodge
and it is not easy for us to suppress our ire while
acknowledging that we have not properly understood something

<t> Except for the languages LISP, SNOBOL and TRAC.

elementary. We pu
paragraph.

2.12 Dereferencing

If ex ::: 3. 14c
(in the reach of
However, the mode o
while an •assigna
•destination• shou
the •source•. This
It would seem th
into the syntax
•assignation•. Dia
figure 2.12. The fi
and the • destina t
1,2,3 and 4). Howev
extra step in its
(figure 2.12 at
"dereferenced" (fig

. ref

r-
1

reference-t
real-destina

I
I
I

(6) I
I

ox
: (
0

: •••••••••• 0 0

0

refers is yielded
is known as a "coer
fR.8.2]. There is t
as a •source•, po::
in figure 2.12 at~
ready to make the a
the •assignation•
figure at 6).

The syntactic
not trivial and we
sketched it rougl
determine how eye,
real•, can be con~
figure at 3). The c
rule

An ALGOL 68 Companion 23

elementary.
paragraph.

We pursue this point a little fuEther in our next

2.12 Dereferencing

If ex:; 3.14c is an •assignation•, then surely ex .- yo
(in the reach of the declaration ct~i!.! yo) must be also.
However, the mode of exe and that of eye is •reference to real•,
while an •assignation• requires that the mode of the
•destination• should be •reference to• followed by the mode of
the •source•. This means that the mode of eye should be •real•.
It would seem then, that this object does not fit immediately
into the syntax of •assignations•. However, it is an
•assignation•. Diagrammatically, the situation is shown in
figure 2.12. The first step is the elaboration of the •source•
and the •destination• collaterally [R.6.2.2.a] (figure 2.12 at
1,2,3 and 4). However, the •source•, in this object, reguires an
extra step in its elaboration. Since eye pos£esses a n~me
(figure 2.12 at 2) referring to a real value, this name is

11 dereferenced" (figure 2.12 at 3), i.e., the value to which it

••••••••••• reference-to-real-assignation
I

r---------~-~-----------------,
I I I

reference-to- becomes- real-source
real-destination symbol 1

I I I
I 1 (4) ••••••••• real-base
I I I {3)

: (6) 1 1 reference-to-real-base
I I I

ex .- yo
: (1) : (2)
o r------, r------, o

: •••••••••• o o->-1 1;;;(;;1 ~-<--o o
0 L-------.J (5) L-------.J 0

Pig. 2. 12

refers is yielded (figure 2.12 at 4). The act of dereferencing
is known as a "coercion", of which we shall hear much more later
fR.8.2]. There is thus an intermediate step during which eye ,
as a •source•, possesses a real number. This moment is picturej
in figure 2.12 at 4. From this intermediate situation we are now
ready to make the assignment (figure 2.12 at 5). The value of
the •assignation• is a name of mode •reference to real• (see the
figure at 6).

The syntactic analysis of the •assignation•, ex := yo, is
not trivial and we are not ready to do it though we have
sketched it roughly in figure 2.12. The main point is to
determine how eye, which is of a priori mode •reference to
real•, can be considered, a fOsteriori, of mode •real• (see the
figure at 3). The crucial step is contained in the production
rule

•
)

24 An ALGOL 68 Companion

•strongly dereferenced to real base : reference to real base.•
which is obtained from 8.2.1.1.a of the Report by suitable
replacements of the metanotions. We do not intend to gc into
further detail here, for coercion is the topic of chapter 6. our
purpose is to affirm that ox := yo is indeed an •assignation•
even though the a priori mode of oyo is not •real • .

The reader may wish to persuade himself, from what
before, that ox := y := 3. 14o is also an •assignation•,
a different meaning from that of the, rather
•dssignation• o(x := y) := 3.14o.

2.11 Initialized declarations

has gone
and has
foolish,

The •actual-parameter• of an •identity-declaration• may
also be an •assignation•. The pertinent rules are, in simplified
form ,

actual parameter : unit ;
unit : unitary clause •
unitary clause : • • • ; confrontation

R.7.4.1.b
R.6.1.1.e

R.8.1.1.a, 8.2.0.d
confrontation: assignation /?\ R.B.J.0.1.a

Since nl2~ £~'!! := 3.14o is a~ •assiqnation•, this means that
oi~! £~~1: x = 1.2£ real := J. 14n is an •identity-declaration•.
But we have seen th~t the object O!~f £~~! x = 12£ £~glo may be
written of~i!l xo [R.9.2.a]. This means that ofgi!! x := 3. 14o is
also an •identity-declaration• with the same meaning as that of
oref real x = loc real := 3 .14o. This meaning should now be
evident--once -It -is-realized that the •assignation•, being the
•actual-parameter•, is elaborated before the final step of the
elaboration of the •identity-declaration•. ALGOL 68 may thus be
considered as a language which contains initialized
•declarations•, although the defining Report does not mention
them.

2.14 Program example

The following •particular-program• corn~utes the components
(principal and interest) of the man thly repayments of a loan. It
first reads the principal, r:po, the interest rate per unit per
year, oro, the number of times per year that the interest is
converted, oto, the constant monthly payment, ompc and the
number of years, oyo. It then prints an echo of the input,
followed by a table of four columns consisting of the month
number, the principal outstanding at the end of the month, the
component of the monthly payment which is principal and that
which is interest. A separate computation is made for the final
monthly payment. Critical computations are made using values of
mode •long-real•.

o~~g.!~ 1:2.!!1 £~~1 p ¢the principal¢,
r ¢the interest rate per unit per year¢,
mp ¢the constant monthly payment¢,

int t ¢the number of times per year that the interest is
converted¢, y ¢the number of years¢

start here: read((p, r, t, mp, y))

outf(standout,
$l"repayment.s
l"interest. ra
"·converted.

l"monthl y.!.pay
(p, r, t, mp,

.!! r > lo ~g 1 • 0
!~~~ print((newli
~1§~ l2ng £~~1 mi
longexp Cl~.!!g(t I
12~g E~~l ap ¢ace

fi
gn~;;

_g (mi - !.2.!!.9 1
.!h~~ print ((new
~1§~ in_! j := 0
l2!!g £~~1 inter
outf (standout,

("month", "am
format(standout
¢this associate
again : ¢return
j +:= 1 ; ap :=

H. j ~ y ¢num
2£ ap ~ mp

!hg.!! out(stan
~l~g ¢regular
out (standout,
9.2 !2 again
fi

fi-- .!!

The output fro

REPAYMENT SCHEDULE
INTEREST RATE PER U
MONTHLY PAYMENT

MONTH AMOUNT
1 906.62
2 812.63
3 718.01
4 622.76
5 526.89
6 4 3 0. 38
7 333.23
8 235.43
9 136.99

10 37.90
11 0.00

y
d

t

e
s
f
e
e
.e

on

:s
[t

-,
:h
he
1t
il
)f

An ALGOL 68 Companion

outf(standout,
$l"repayment~schedule~of~a~loan~of~"9zd.2d,
l"interest&rate~per~unit~"d.4d,
"Lconverted~"2zd"~times~per~year",

l"monthl y.!.paymen t~"7zd. 2d , "~for~"2zd" ~years. 11 $,
(p, r, t, mp, y))

.!!: r > lo.ng 1.0
!:!!g!!. print ((newline, "interest.Lra te..!.is~too,.!.high"l)
g!§g .12~ £g~! mi = ¢monthly increment multiplier¢
longexp C!g!g(t 1 12) * longln(!QQg 1.0 + r 1 !gng t)),
.12!9. £g~! ap ¢accumulated principal at the end of the month¢

if . (mi - 12!3 1.0) * p > mp
.!!!~.!!print ((newline, "payment..!:,.does~not .£ cover..! interest"))
~!§g in!: j := 0 ¢the month number¢,
12!!9. £g~.1 interest ; y *:= 12 ;
outf (standout, $1 2x8a, 3(12a)$,

("month", "amount", "principal", "interest"))
format(standout, $1 4zd, 3(7zd.2d) $)

25

¢this associates a format with the standard output file¢ ;
again : ¢return to this point for each monthly calculation¢
j +:= 1 ; ap := p * mi ; interest := ap- p ;

if j ~ y ¢number of years is satisfied¢
2£ ap 5 mp ¢the last payment is duet

then out(standout, (j, 0.0, p, interest))
~j~~ ¢regular monthly payinen t¢ ~ : = a p - mp ;
out (standout, (j, p, mp-intere~ - interest)) ;
9.2 !:2 again
fi

fC-
!i

The output from a run of the above program should be

REPAYMENT SCHEDULE OF A LOAN OF ~~~ 1000.00
INTEREST RATE PER UNIT 0.0800 C~ VERTED 4 TIMES PER YEAR
MONTHLY PAYMENT 100. 00 <i£Y 1 YEARS.

MONTH AMOUNT PRINCIPAL INTEREST
1 906.62 93.3 8 6. 62
2 812.63 94. 00 6.00
3 718.01 94.62 5. 3 8
4 622.76 95. 24 4. 76
5 526.89 95. 88 4.12
6 4 3 0. 38 96. 51 3.49
7 333.23 97. 15 2. 85
8 235.43 97.79 2. 21
9 136.99 98.44 1. 56

10 37.90 99. 09 0.91
11 o.oo 3 7. 90 0.25

26 An ALGOL 68 Companion

Review questions

2.1 Declar e rs

a) Is ofg.21 f~.fa a •declarer•?
b) I s ofg.ff)£~.! f~~1o a •decla rer•?
c) Writ e down a •declare r• specifying the mode •reference to

r e fer e nce to row of character•.
d) Is of 1f2£.!l.!~!:o a •declar e r•?
e) I s ofgf. f2f!!!~!:o a •declarer•?
f) Is a£g.21 Ef~~o a •declarer•?
q) Can a va lu e be of mor e than one mode?
h) Doe s a mode spe cify a •declarer•?

2. 3 Lo cal generators

a } How many •real-gener a tor s • iire there [R.fl.5.1.1]?
b) Write d own a •lo c a l- g en e rator• which posse s ses a value of

mod e •reference to charact e r•.
c) Write down a •reference-to-boolean-local-generator•.
d) Is t here an •integral-local-generator•?
e) Is the followin g a production rule of the strict language

fR.1.1.5.a]?
•ref e r e nce to row of c haracte r local generator

local symbol, actual format decl~rer.•
f) I s •r e al- proce d ure-with-boolean• a mode [R.1.2.1)?

2 .4 Evaluation of a generator

a) Does the •g e nerator• o]Q~ f~~J:o, after elaboration, pos s ess a
r e al va lu e ?

b) Does th e • ge ne rator• oloc f~~!o, after elaboration, poss e s s a
v a lue?

c) Can a r e al va lue refer t o a •gen e rator•?
d) Can a r ea l va lue refer to a name?
e) Can a name refer to mor e than one value (R.2.2.1.5.a]?
f) Can a name refer to more than on e instance of a value

fR. 2.2.3.5.a]?

2 . 5 I dentity dec l a rations

a } Can two different externa l o biects possess the same internal
o bje ct?

b) I n th e r each o f o_!nt rn = 2o, can the Viilue possessed by orne
be changed?

c) In the reach of oref real x
. possessed by oxo-be changed?

loc

~) Write d own a •lo cal-generator• which,
poss esses a value of mode •reference to
r e al•.

2. 6 Synt a x of identity declarations

can the value

~fter elaboration,
row of procedure

a) Is D_!!!QQg ~ = f~~!o an •identity-declaration•?
b) I s D!;:gf f.EE~! xo a •decla ration•?
c) In the • d eclara tion • af_EEl !!!!: nno, what is the mode of ann o?

d) w rite a • dec L
procedure- real ·

2. 7 Formal par<

a) I s o £~21 · no a • :
b) Is of)E£OC r eal
c) Is o l o c reai~- a
d) Is oin! 1~-a •fc

2 . 8 An extens ic

a) Write the • dec lc
b) Write the •decl<
c) Wr i t e the •dec lc

l anguage.
d) Wri te ore f r ef 1

language-['R:9.;

2.9 An assign a1

a } I s o2. 3 : = 3. 4 o
b) Do es an •ass ign c:
c) Ca n an •assigr

value?
d) Is o (X :; 3. 14)

2.10 Syntax of

a) Is aloe re~1 :=
b) Is oloc £~! f~~J
C) Is aloe re.f f~~J
d) What-Is the •sot
e) What is the mode

of cref real Xl
f) In the-reach- o1

• assignation•?

2.12 Dereferenc

a) What is the e~

e x := yo and cl
b) I s any dereferer

xc , in the reac

2. 13 Ini tialize

a) What are the me
n = 2c and oini

b) Make a diagram-]
in the reach oJ

c) Is it possible 1
= £~21 : = 3. 1 41

2.14 Program e1

e

1

c

.e

?

An ALGOL 68 Companion 27

d) Write a •declaration• of ope as a •reference-to-row-of­
procedure-real-mode-identifier•.

2.7 Formal parameters

a) Is c£~.2.! ' nc a •formal-parameter•?
b) Is o[]£I.OC £~!!± pqrc a •formal-parameter•?
c) Is oJQf r~~.!c a •formal-parameter•?
d) Is c.!.!!! 1o a •formal-parameter•?

2.8 An extension

a) Write the •declaration• cr~! f~~.! xxo in the strict language.
b) Write the •declaration• of~~! x, yo in the strict language.
c) Write the •declaration• o£~~1 x, y := 3.14o in the strict

language.
d) Write o£gf £g! £g.2_! XX= _!gg fgf £g_2] + 3.14o in the e~tended

languag e [R.9.2.a].

2.9 An assignation

a) Is c2. 3
b) Does an
c) Can an

value?

:= 3.4c an •assignation•?
•assignation•, after elaboration, possess a value?
•assignation•, after elaboration, possess a real

d) Is D (X := 3. 14) := 3. 15c an •assignation•?

2.10 Syntax of assignations

a) Is cJQf re~.! := 2.3c an •assignation•?
b) Is c_!Qf £gf £g~_! := XD an •assignation•?
c) Is c.!Qf £_g! fg~! :.:: 3. 14o an •assignation•?
d) What is the •source• in the •assignation• ox .- y + 2o?
e) What is the mode of the •assignation• cxx := xc (in the reach

of oref real xx, real xc)?
f) In the-reach- of c~oo_! t = !f]go, is ct := ~~.!§go an

•assignation•?

2.12 Dereferencing

a) What is the essential difference between the elaboration of
ex := yo and ox := 3. 14c?

b) Is any dereferencing necessary in the •assignation• cxx :=
xc, in the reach of cr~! £~.2! xx, rg~.! xc?

2.13 Initialized declarations

a) What are the modes of orne and one in the •declarations• c.!!!!
n = 2c and oint m := 2c?

b) ~ake a diagrai-Illustrating the •assignation• cnn := n := 1c,
in the reach of cref int nn, int no.

c) Is it possible to apply-an extension(R.9.2.~] to Dfg~ £~~! X

= £~~.! := 3.14c?

2.14 Program example

28 ~n ALGOL 68 Companion

a) How many occurrences of an •assiqnati,cn• are there in this
•particular-program•?

b) What coercions are involved in tpe e:j.abor~tion of ap ;= ap
mpa?

c) What is the effect of oj +:= la [R.10.2.11.d)?
d) Ar e there dJ'1Y •i!lentifiers• which are •cqnstants•?
e) What is the moqe of ope?

3 Unitary clauses

3. 1 In traduction

The •uni tary-1
blocks of the langu;
as the statement or
•unitary-clauses• a
1 i Y o- 2) Do I

•confrontations, fa .
like •closed-clause:
yo is a •formula•,
and c(x := 1 ; y : :

We now give a :
the ordinary typefo1
approximation to thE
[R.8.1.1], but a si1

unitary clause : 1
tertiary : second<
secondary : primal
primary : base ; c

conditional clat

unitary-clat
I
r----
1

tertiary
I
r----
1

secondary
I
1----
1

primary
I

r---~--~-
1 I

base closed-c

The purpose of th
aspects of •unitary­
the classification
classification will
elaboration in a •cl

ca .Q!
where the modes o
fact the order is as

< 1 > Note that the op
that it delivers a n

An ALGOL 68 Companion 29

3 Unitary clauses

3.1 Introduction

The •unitary-clause• [R.B] is one of the basic building
blocks of the language. It corresponds roughly to what is known
as the statement or the expression in ALGOL 60. Some examples of
•unitary-clauses• are, ox := y, x + y, re 2! z, 123c and c(x :=
1 ; y := 2) c. •Unitary-clauses• are classified further into
•confrontations, formulas, cohesions, bases• and other objects
like •closed-clauses•. Thus, ex := yo is a •confrontation•, ox +
yo is a •formula•, ere 2! zc is a •cohesion•, o123c is a •base•
and c(x := 1 ; y := 2)o is a •closed-clause•.

we now give a simplified syntax of •unitary-clauses•, using
the ordinary typefont, to remind the reader that this is only an
approximation to the syntax. The exact rules are in the Report
[R.8.1.1], but a simplified syntactic tree is in figure 3. 1.

unitary clause : tertiary ; confrontation.
tertiary : secondary ; formula.
secondary : primary ; cohesion.
primary : base ; closed clause ;

conditional clause ; collateral clause.

unitary-clause
I
r--------------------~
I I

tertiary confrontation
I
r--------------------,
I I

secondary formula
I
~------------------~
I I

primary cohesion
I

r-----L--r---------------r-----------------~
I I I I

base closed-clause conditional-clause collateral-clause

Fig.3.1

The purpose of this chapter is to study some of the simpler
aspects of •unitary-clauses• and to observe the usefulness of
the classification introduced by the syntax just given. This
classification will help us to decide, for example, the order of
elaboration in a •clause• like

ca Qf b := c 2! d 2! e(f]- gc<t>
where the modes of ca, b, c, d, e, fc and ego are unknown. In
fact the order is as if we wrote

< t> Note that the operator DQfD may be declared in such a way
that it delivers a name.

30 An ALGOL 68 Companion

o (a QE b) .- ((c .2! (d of (e[f)))) - g) a
The pu~pose of this syntactic classification, then, is to
~elieve the p~og~amme~ of the necessity for supplying these
pd~entheses himself. In andition, it aids the compiler by
excluding ce~tain mode dependent parsings.

•Unita~y-clauses• which delive~ no value a~e known as
•statements• [R.6.0.1.c], while othe~ •unitary-clauses• a~e
known as •exp~essions• [R.6.0.1.b). This distinction is la~gely
histo~ical and is of no significance in ALGOL 68.

3. 2 Bases

•Bases• a~e the most elementary •unita~y-clrluses•, so we
begin with them. Some examples of •hases• are opi, 123, a[i],
sin (x) o and o(: ~andom)c. A simplifiP.d syntax for base is

base : mode in en t if ier ; nenota tion ;
slice ; call ; void cast pack. ,

but the st~ict syntax of the Report should be studied
r R.8.6.0. 1]. •Identifiers• a~e as in other programming
lanyuages, e.g., o~andomo and nj14283co. •renotations• we have
met befo~e in section 1.S, e.g., o758o is an •integnl­
denotation•, o3.1o is a •real-denotation•, o!~.!2~o is a
•boolean-denotation•, o"q"o is a •character-denotation• 'l nd
o"abc"o is a •string-denotaticn•. Thus we are already familiar
with seve~al objects which are •bases•. The objects ox1(i)o and
ox2[d:e,j]o a~e •slices•, asin(x)o is a •call• and o(: ~andom)a
is an example of a •void-cast-pack•. The classification of these
objects as •bases• tells us where they stand in the o~der of
elabo~ation, and we shall see later, also, that a •base• is one
kind of •coercend• [R. 8. 2], i.e., an object upon which :lll
coercions must be expended. But coe~cion is a subject for
chapter:: 6.

1.3 Identifie~s

A •mode-identifier• [R.4.1.1.h] is so called
distinguish it from a •label-identifie~•, which is
Both of these •identifiers• might be described by
simplified syntax rule

in o~der to
not a • base•.
the following

identifie~ : letter ; ioentifier, letter ; identifie~, digit.
which means that an •identifie~· is what one expects it to be
from the use of that te~rn in other prog~amming languages, i.e.,
a l e tter followed, perhaps, by any numter:: of letters or digits.
The strict synt::t.x, in the Repo~t [R.~.1.1.b,c,d), looks mo~e
complex, fo~ a reason which will appea~ in later:: discussions
concerning •field-selecto~s· [R. 7.1.1.i). Scme examples of
•identifie~s· are, oalgol 68, a, a3b7d9, random, st pierre de
chartreuseo (note that spaces are of nc significance within

- •identifiers•) (~ R. l.1.£..ct.)•

A •mode-identifier• usually possesses a v:~.lue. This value
is the ~arne as that possessed by the same •identifie~• at its
defininq occurrence. In the •assignation• ex : = y + 3o, the
•mode-ioentifier::• oxn, supposedly in the reach of the
•declar::ation• ofg!!J: xo, possesses a name which refers to some

AI

real value. The val
possesses is, in fact
figure at 2) possess;,
its occurrence as the
The effect of the elab
DI~~1 X ; X := y + 3c

0
(2) 0

0

L

where the identity
indicated at 3. In thi
occurrence of axe pos
first occurrence of ox
same instance of a
consult the Report
description of the
•identifiers• is made.

3.4 Slices

We continue out
•denotations•, but we
go on to •slices•. In
xl, [1:m,1:n]t~!!! x2c,

OX 1 [i] 1 X 2[i 1 j] 1

A simplified syntax o1
slice : primary, sui
indexer : trimscrip·
trimscript : trimmeJ

but the strict syn ·
more than the skeletal

The most importa1
its first consti tue1
•primary•. Also noti~
a •primary•. Followin•
symbol•, represented
•bus-symbol•, represe
the above examples,
ci,mOc. An •indexer•
•comma-symbols•. A •t
The objects cic and
•trimmers•. A •subscr

In order to acco
limited character s
written ax1 (i) a (R. 9

s
f
e
n

. e
:s
te
Je
12

An ALGOL 68 Companion 31

real value. The value (name, see figure 3. 3 at 1) which it
possesses is, in fact, a copy [R. 8. 6. 0. 2. a] of the value (see
figure at 2) possessed by cxo at its defining occurrence, i.e.,
its occurrence as the •identifier• of an •identity-declaration•.
The effect of the elaboration of the second occurrence of oxo in
o£~~! x ; x := y + 3c is shown pictorially in the figure 3.3,

X : = y + 3o

0 (3) 0

(2)o o <-(identity)-> o o{l)
0 0

I r------ , I
'-->--1 r--<-J

'------.J

Fig.3.3

where the identity of the two instances of the same name is
indicated at 3. In this figure one should note · that the second
occurrence of oxo possesses a copy of the name possessed by the
first occurrence of cxa. Consequently both names refer to the
same instance of a real value (R.2.2.2.1]. The reader should
consult the Report [R.4.1.2] which contains a careful
description of the method by which this identification of
•identifiers• is made.

3.4 Slices

We continue our discussion of •bases•; the next are
•denotations•, but we have seen these before in chapter 1, so we
go on to •slices•. In the reach of the •declarations• a[1:n]£~~l
xl, (1:m,1:n]£~~l x2o, the following are examples of •slices•

ax1[i], x2[i,j], x2[,j], x1[2:n], x2[i,~O], x2[i]a
A simplified syntax of •slice• is

slice : primary, sub symbol, indexer, bus symbol.
indexer : trimscript indexer, comma symbol, trimscript.
trimscript : trimmer ; subscript.

but the strict syntax of the Report [R.8~6.1.1] contains much
more than the skeleton shown above.

The most important point to notice about a •slice• is that
its first constituent notion, e.g., the ox1a in ax1[i]o, is a
•primary•. Also notice that a •slice•, being a •base•, is itself
a •primary•. Following the •primary• of a •slice• is a •sub­
symbol•, represented by o[o, then an •indexer• and finally a
•bus-symbol•, represented by o]o. Thus all of the following, in
the above examples, are •indexers•: aio, oi,jo, o,jo, o2:no,
ci,mOc. An •indexer• is one or more •trimscripts•, separated by
•comma-symbols•. A •trimscript• is a •trimmer• or a •subscript•.
The objects cio and cjc are •subscripts• and c2:no and o~Oc are
•trimmers•. A •subscript• is an •integral-tertiary• •

In order to accommodate those users whose computers have a
limited character set, a •slice• like oxl[i]o may also be
written ox1 (i)o [R.9.2.g]. However, we shall not use this

32 An ALGOL 68 Companion

possibility in this text since it then becomes difficult to
distinyuish between a •slice• and a •call•, like osin (x)o.

1.5 Multiple values

A multiple value, as we have seen in chapter 1, is a row of
values fR.2.2.3.3.a). We may represent it diagrammatically as in

r------T------T------r------T------r------~-----,

I I I I I I I I
L-----~-----~-----~------~-----~------~-----~

Fig.3.5.a

figur~ 3.5.a, though we shall see later that this picture is not
comple te. Sometimes a name may refer to a multiple value, in
which case we may think of it as a multiple •variable•. The
difference between the effect of slicing a multiple •variable•
and that of slicing a multiple •constant• is important and we
shall now investigate it ty example. Suppose we have the two
•decl aratio ns• o[1:3]:!!!.! n1 := {1, 2, 3)o and o[1:3Ji!!!: u1 = {1,
2, 3)o. The object o(1, 2, 3)o looks :iild acts like a
•denotation• of a row of integers, but it is actually a

a[1 : 3 Jill~ u 1 = { 1 , 2, 3) o

D (1)
I
~------r------T------1
I I I I
L------L------~------J

Fiy.3.5.b

a[1 : 3]!.!!!: n 1 . - { 1 , 2, J) o

0

..----<---0 0
I o
D (1)

I
~------T------T------1
I I I I
L------L------~------J

• collateral-clause• [R.6.2l. The effect of the elaboration of
these declarations is shown diagrammatically in figure 3.5.b,
from which we see clearly that ou1o is a multiple •constant• and
on1o is multiple •variable•. The "D" in the figure, at 1,
indicates that a "descriptor" [R.2.2.J.J.b], which descrites the
elements, is also part of a multiple value. For the moment we
shall ignore the presence of a descriptor. If we subscript a
multiple •constant• we would expect to obtain a •constant•,
e.g., ou1[2]o but if we subscript a multiple •variable•, we
obtain a •variable• [R.2.2.3.5.c], e.g., on1[2]o. Thus on1(2] :=
4o is an •assignation• but ou 1[2] := 4o is not. This is shown
dia~rammatically in fiqure 3.5.c, where the name possessed by
on 1f 2lo {at 1) is constructed from the name possessed by on1 o
and the •subscript• o2o [R.2.2.3.5.c]. The effect is obtained
syntactically by the fact that the •primary• of a •slice• is in
a weak position. It involves the concept of weak coercion
f R.8.2], which we will discuss more fully in chapter 6.

An

au 1[2)

r -r--:--,-
1 I

L -L-----J-

Observe nov the use of
the Report.

3.6 Trimmers

A programmer v ho i:
to choose certain su.
external object to posso
For ex aap le, one may vi,
matrix or even a subm
by using a •trimmer•, a
a single element,
illustrate the use of
a[1 : 3]iQ~ n 1 : = (5, 7,
referring, at the momen
•variable• referring to
•9•; moreover, being
(if one insists on bein
•variable• referring
• foraula• an 1[2: 3](1] =
fact, it will always
made to anla. Another w
rela tion• an 1[2: 3](1) :

The effect of th
range of values of the
the value of cue and to
renumbering from •1• i
be written al:uaba, vhe
new lower bound. This !
possesses the value •ti
that if cabo is omitt
but the fact that the •
actually built intc
examination of the synt
the ala, the cue and 1
bound• or the •upper-be
empty [R.8.6.1.1.f]. 11
empty, then the lowe
position, is the same <
sliced; if the •uppE
upper bound of the •sl:
if the •new-lower-bouni

An AlGOL 68 Coapanion 33

au 1[2) n 1 (2]a

: 0 (1)
0 0

: 0

r ·-,.--:--,- , r -,.--f--,- ,
I I I I

L -L------.J- .J L -L----.J- .J

Fig. 3. 5. c

Observe now the use of the word •weak• in the rule 8.6. 1.1.a of
the Report.

3.6 Trimmers

A programmer who is manipulating multiple values may wish
to choose certain subsets of a multiple value and to allow an
external object to possess that subset or a name to refer to it.
For example, one eay wish to choose a row or a column of a
matrix or even a submatrix of a given matrix. This may be done
by using a •trimmer•, although, if that subset is to consist of
a single element, then •subscripts• are sufficient. To
illustrate the use of •trimmers•, consider the •declaration•
o[1:3U!!.! n1 := (5, 7, 9)a. The •slice• an1(2]o is a •variable•
referring, at the aoment, to •7•, but the •slice• an1(2:3]o is a
•variable• referring to a row of two integral values •7• and
•9•; moreover, being a •primary• itself, it may be subscriptej
(if one insists on being foolish), so that on1[2:3][1]o is a
•variable• referring to the same integral value •7• and the
•formula• on1[2: 3](1] = n1[2]o possesses the value •true•. In
fact, it will always be .true• no matter what assignments are
made to on1o. Another way of saying this is that the •identity ­
rela tion• on 1[2: 3)[1) :=: n 1[2]o possesses the value •true•.

The effect of the •trimmer• al:uo is then to restrict the
range of values of the subscript to run from the value of ole to
the value of auo and to renumber, starting from •1•. If the
renumbering from •1• is not desired, then the •trimmmer• should
be written ol:uabo, where the value of abo is to be taken as the
new lover bound. This means that, e.g., an1[2:3i0][0] :=: n1[2]o
possesses the value .true •• We may think of this in the sense
that if o~bo is omitted, then the default value of abo is •1•,
but the fact that the •new-lover-bound-part• may be empty is
actually built into the syntax [R. 8.6.1.1.f]. A further
exaaination of the syntactic rule for •trimmers• reveals that
the ala, the ouo and the a~bo may be omitted, i.e., the •lover­
bound• or the •upper-bound• or the •new-lower-bound-part• may be
empty [R.8.6.1.1.f]. If the •lower-bound• of a •trimmer• is
empty, then the lower bound of the •slice•, in that subscript
position, is the same as that of the •primary• which is being
slicea; if the •upper-bound• is empty, then the corresponding
upper bound of the •slice• is the same as that of the •primary•;
if the •new-lower-bound-part• is empty, then the subscripts of

34 An ALGOL 68 Companion

the • s lice•, in that subscript position, will start from • 1-. It
is even possible for all three to be empty at the same time.
Thus anlf:] .-. n1[1:3]a will possess the value .true ••
Extension 9.2.f, in the Report, allows the •up-to-symbol• to be
elidej, under certain circumstances, so that the above
•identity-relation• might be written on1[] :=: n1f 1:3]a.

If the •declaration• o[1:m, 1:n)E_g~l x2o is used as that of
an m bv n matrix, then ax2[i]o refers to the i-th row of the
matrix, ox2f: ,j]a, or even nx2[,j]o [R.9.2.f], to the j-th
column and ox2fa:b,c:d]o may refer to a certain submatrix, if
the values of oa, b, co and odo are appropriate. The rules for
•trimmers• [R.B.6.1.1.f,q,h] should be examined to see that ol,
uo and abo in ol:u~ba are all •integral-tertiaries •. In
particular, a •formula• is a •tertiary• but an •assignaticn• is
not, so that ox2 [i +:= 1, j 2! r]o is an acceptable •slice• but
ox2f i := i + 1, j 2! r lo is not. The latter, to be acceptable,
sho uld appear as ox2[(i := i + 1), j 2f r]a.

3. 7 Calls

A simplified syntax of a •call• is
ca ll : primary, open symbol, actual parameters, close symbol.
actual parameters : actual ~arameter ;

actual parameters, qomma, actual parameter.
gamma : go on symbol ; comma symbol.

but the strict syntax is to be found in the Report [R.8.6.2.1.a,
5.4.1.c, 5.4.1.d). Examples of •calls• are osin(x), char in
string ("a", i, s)o and of(n; a, b)a. rhese are familiar
features from other programming languages, except perhaps the
possibility of using a •go-on-symbol•, represented by o;o, to
~epa rate the •actual-parameters• of a •call•. This possibility
1. ~ ~res?.nt so that the programmer may, if he so wishes, match a
s1.m1lar use of a •go-on-symbol• in the corresponding •routine­
denotation• fR.5.4.1l, where its use will fcrce the elaboration
of the •actual- pa rameters• serially rather than collaterally.
Thus, in the •call• of (n; a, b) n, the nna might be used as a
bound for the arrays oao and nho, provided that a •go-on-symbol•
was used in a similar position in the •routine-denotation•
possessed by afo. Note that the •go-on-symbol• in a •call• has a

·~ecorative effect only. It is the presence of a •go-on-symbol•
1n the •formal-parameters-pack• of a •routine-denotation• which
has the controlling effect.

•Routine-denotations• are important and must be understood
before we examine the semantics of •calls•; however, •routine­
denotations• will be discussed in chapter 5, so we will postpone
our explanation of these semantics until that time.

The most important point to notic~ about the syntax of a
•call• is that its first constituent nction, e.g., asinn in
osin(x)a, must be a •primary•. Also notice that a •call• itself
is a •primary• so that ca (h) (c) (d)o might well be a •call• in
which the order of elaboration is that suggested by
o ((a (b)) (c)) (d) o. As we have already remarked, in section 3. 4,
in some programs it may not be possible tc determine whether

An

ca(b)a is a •slice•
~aa, but since the parsj
1s of no great hard~
that the object cif x •
• primary • and tiierefo1
~s a •call•. It so happE
1s also a •call•, and 1
useful.

3.8 Void cast packs

An example of a •vt
c (tva

Its purpose is to voii
in those situations wbe:
in D; X ! = 2 * X + 1 ; 1
a •statement• by the fa
•go-on-symbols•. An e
is

c£roc tvoidt
where cpa is-made--to
•assignation• but th
elaborated until ape is
: = 2 * x + 1) c is not
might find it confusing
•declaration• involves
take up in chapter
wish to follow the synt
81a,b,c, d, 820d, 823a
those who could have fa
this book!

A simplified syn ta
void cast pack :

open symbol, cast c
but the strict syntax j

Report [R.8.3.4.1.a, 3.

~he •void-cast-p;
•rout1ne-denotation• iJ
no value and have no •1
[R.5.4.1] will revea :
denotations•. There is
together with the •voit
about this later.

3. 9 Cohesions

A •cohesion• is
•selection•, e.g., are

•MODE cohesion : MOD
[R.B.S.O.l.a]. A •cohe
•coercend• upon whic
shall discuss coerci
•generators•, so we no

t

e

f
e
h
f
r

n
s
t

l,

i.n
l[

he
co
ty
a

e­
on
y.
a

1•
n•

a
1•
ch

od
e­
me

a
in

!lt
in
hy

. 4,
1er

An AlGOL 68 Companion 35

ca(b)c is a •slice• or a •call•, without knowing the mode of
cac, but since the parsing tree is similar for these tva, this
is of no great hardship for the compiler. We shall see later
that the object ci_! x < pi/2 then cos else sin fie is a
•primary• and therefore oif x (-pl/2 then-cos else sin fi (x)c
is a •call•. It so happens that DE2g!B r-:; s + 2-;-sin ~]~ (X)D
is also a •call•, and perhaps some programmer will find it
useful.

3.8 Void cast packs

An example of a •void-cast-pack• is
o(¢~Qid¢: x := 2 * x + 1)c

Its purpose is to void the mode of the •unit• contained therein
in those situations where this is not done implicitly, such as
in o; x := 2 * x + 1 ;o, where the •assignation• is turned into
a •statement• by the fact that it is preceded and followed by
•go-on-symbols•. An example where a •void-cast-pack• is needed
is

D££0C ¢!Q!g¢ p = (¢yg!g¢ : X := 2 *X + 1)o
where ope is made to possess a routine, which contains an
•assignation• but the •assignation• should not itself be
elaborated until cpa is called. The object D££QE ¢yoig¢ p = (x
:= 2 * x + 1)c is not an •identity-declaration• {the programmer
might find it confusing anyway). A full explanation of the above
•declaration• involves the concept of coercion which we shall
take up in chapter 6. Readers whose curiosity is aroused may
wish to follow the syntactic analysis suggested by 74a,b, 61e,
81a,b,c,d, 820d, 823a, 860b, 834a, 61e, 81a, 820d, 828a, :t.n3
those who could have found it for themselves need not be reading
this book!

A simplified syntax of •void-cast-pack• is
void cast pack :

open symbol, cast of symbol, unitary clause, close symbol.
but the strict syntax is found in more than one place in the
Report [R.8.3.4.1.a, 3.0.1.h, 7.1.1.z].

The •void-cast-pack• may appear to play the role of a
•routine-denotation• in the case of those routines which deliver
no value and have no •parameters•. An examination of the Report
[R.5.4.1] will reveal that there are indeed no such •routine­
denotations•. There is however, a proceduring coercion and this,
together with the •void-cast-pack• fills the need. But more
about this later.

3.9 Cohesions

A •cohesion• is either a •generator•, e.g., or.~.!c, or a
•selection•, e.g., ore of zc. The strict syntax is:

•MODE cohesion MODE generator ; MODE selection.•
[R.B.S.O. 1.a]. A •cohesion•, like a •base•, is also a class of
•coercend• upon which all coercion must be expended, but we
shall discuss coercion later. We have already examined
•generators•, so we now turn to •selections• •

36 An ALGOL 68 Companion

3.10 Selections

An example of a •selection• is ere of zc in the reach of
the •declaration• n§!~~ct (~~~1 re, im) zc. A simplified syntax
of •selection• is

selection : field selector, of symbol, secondary.
but in the strict syntax of the Report [R.8.5.2.1.a) several
metanotions are used with penetrating effect. In order to
under s tand the meaninq of a •selection•, We need to know that
som e values, unlike multiple values, may be built from several
values whose modes may be different. Thus we may build a
"structured" value consisting of one or more "fields"
rR.2.2.3.21 in which the value of each field has, possibly, a
different mode. The fields of a structured value are then
selected by •field-selectors•, which look like •identifiers• but
which, syntactically, are not •identifiers•. For example, in the
•selection• ere 2f zc, the •field-selector• is crec.

An example of a •declarer• which specifies a structurej
mode is cstruct(real value, string name)c. Values of such a mode
then consist-of two-fields, one-whose mode is •real• and another
whose mode is •row of character•. If one wishes to obtain, or
assiqn to, th e •real• field of a •variable• ere referring to a
value of such a mode, this is done by using the •selection•
evalue of ro; the string field is obtained by the •selection•
ename Qf-rc. Note the similarity with the •slice• ox1[i]c, where
an element i s ~selected from the value of the •primary• according
to the value of the •subscript• eie. In the selection cvalue 2!
ro, an element is selected from the value of the •secondary•
ere, using the •field-selector• cvaluec. There is, however, one
essential differe nce in that the value of the subscript, eie,
may vary dynamically, whereas the •field-selector•, cvaluec,
cannot. This makes field selection an , inherently efficient
process.

As with a •slice•, the value of a •selection• from a
•secondary• which is a •variable•, is also a •variable•, but the
value of a selection from a •secondary• which is a •constant•,
is a •constant•. Thus with the •declarations• D§~£~£!(iB! i,
~22! b) ib := (1, !ryg)c and e §!fY£~(£g~1 r, fl!f c) rc = (1.2,
"k") e, ci 2! ibn is a •variable• and ci Bf ib := 2c is an
acceptable •assignation•; however, cc Qf r:co is a •constant• anj
ec of rc := "m"c is not permitted. The reader may wish to note
that- these effects are obtained, syntactically, through the use
of the metanotion REFETY and the word •weak• in the rule
8.5.1.1.a of the Report. The same remark applies to the rule
8.6.2.1.a for •slice•.

It is important to observe that a •selection• is always
m~ de from a •secondary• and in this way it differs from a
• s lic e •, since only a •primary• can be sliced. This means that
the order of elabor:ation of the object ca 2! b[c]c must be the
same as that of ca Qf(b[c])c, for ca Qf be is not a •primary•.
Also, a •selection• is itself a •secondary• so that ca Qf b 2! c
2! de may be a •selection• whose order of elaboration is
suggested by oa 2! (b Qf (c Bl d)) c. Observe that if cdc is a

•variable• then ca

3.11 Formulas

A simplified s
formula : operand

monadic operata
operand : t ertiar

but the strict syn
•Formulas• with two
and those with on
same symbol may be
•monadic-operator•,
rely upon some con
• formula•.

A major new fe
may be declared. T
not mean wha t we th
•ran ges• in which
declaration• i s

DQ.Q Q£ = (£~!!!
but since this invo
yet discuss ed, we
•operation-declarat

The synta x g
•tertiar y•. Al so, t
shows that a •form
deduce that t h e ela
in the order sug
find t he following

a •primary• may
a •secondary• m

•secondary•,
•operands• are

[R.B.6.1.1.a, 8.
8.1.1.b,c, d].

A set of stand

DYADIC

1 2 3 4

c-:= Q£ @ =

+: = "I
•:=
/ : ==
+:==
+:: =
+=:

•

t

a
e

n
j

.e
;e
.e
.e

rs
a

l.t
he ..
c

is
a

An ALGOL 68 Companion

•variable• then ca Qf b Qf c g! de is also a •variable•.

3.11 Formulas

A simplified syntax of •formula• is
formula : operand, dyadic operator, operand

monadic operator , operand.
operand : tertiary.

37

but the strict syntax contains much more information (R.8.4.1].
•Formulas• with two •operands• are known as •dyadic-formulas•
and those with one •operand• are •monadic-formulas•. Since the
same symbol may be used both as a •dyadic-operator• and as a
•monadic-operator•, as for example inc(- a - b)c, one must
rely upon some context to determine the full extent of a
• formula•.

A major new feature of ALGOL 68 is the fact that operations
may be declared. This means that any •operator•, e.g., c+c, may
not mean what we think it means unless we have examined the
•ranges• in which it occurs. An example of an •operation­
declaration• is

DQE Q£ = (£~~± a, b)£~~1 : !! a > b !h~~ a else b !!c
but since this involves •routine-denotations•, which we have not
yet discussed, we shall postpone a full examination of
•operation-declarations•.

The syntax given above shows that an •operand• must be a
•tertiary•. Also, the syntax given in section 3.1 [R.8.1.1.b]
shows that a •formula• is itself a •tertiary•. From this we may
deduce that the elaboration of the •formula• oa Qf b[i] + cc is
in the order suggested by c(a Qf (b[i])) +co. The reader may
find the following summary useful:

a •primary• may be sliced and a •slice• is a •primary•,
a •secondary• may be selected from and a •selection• is a

•secondary•,
•operands• are •tertiaries• and a •formula• is a •tertiary•,

[R.8.6.1.1.a, B.6.0.1.a, 8.5.2.1.a, 8.5.0.1.a, 8.4.1.f,
8.1.1.b,c,d].

A set of standard operations, which the Frogrammer might

DYADIC MONADIC
---T----------------
1 2 3 4 5 6 7 8 9 1 (10)

c=~=--~~--QD----:----~--------;----~E --i--:-~-=~-~-a~;n ~~ ~
+:= ~ ~ + + 1~~ I ~Q§ ~!~ £~]£ .
*:= ~ +: ~E~ I !~Q ~E~ 1~~ ~]~
;:= > I 1~§ I ±~~g ~ggrt
+:= ~±~! ~E§ 1 QQQ §!gn £ggng
+ : : = 1 !~ !! fgnj
+=: I Qj:Q fi~c

--~----------------

Fig.3.11

38 An ALGOL 68 Companion

expect of any programming language, is [:rovide:i (R. 10.2] and
standard priorities (from 1 to 9) are Jiven (R.10.2.0). This
standard set is to be found, in summary, in 8.4.2 of the Report
and is reproduced here for convenience. There are nine
priorities (from 1 to 9) for the •dyadic-operators•. The
•monadic-operators• all have the same priority (effectively 10)
and when used consecutively, are elaborated from right to left.
A typical •priority-declaration• is

tl£!;:i2£i11 + = 6o
and in fact, this is to be found in the •standard-prelude•
fR.10.2.0.a). Operations whose •operators• have the highest
priority are elaborated first. This means, e.g., that the
•formula• oa < b = c > do is elaborated in the order suggested
by o(a < b) (c > d)o. Also, the value of c(-1 EE 2 + 3)c and
c(3- 1 EE 2)o are •4• and •2• respectively, a fact which may
come as a surprise to users of some other languages<t>. In
;ustification of this choice one must observe that, when
•operators • and their priorities may be declared, a simple rule
for the priority of •monadic-operators• is essential. Consider,
for example, the formula

We know immediately
suggested by

ex ~ Q ~ y d e zo
that the order of

ox ~ (~ (f y)) Q (~ z) c
since the monadic operations are performed
priorities of the •dyadic-operators• o~o and
doubt which may remain.

elaboration is that

,
first, while the

DQD will settle ~ny

It would tak e too long to describe all the operations which
are provided in the •standard-prelude•, and indeed this 10ould be
a waste of time, for their precise definition is given in
Chapter 10 of the Heport. We shall be content with mentioning
some of the less familiar •operators•, beginning with those of
the hiqhest priority. i.e., the •monadic-operators•. The
•ope rator• o1~n~o operates en an integral, a real or a complex
value delivering a value whose length (precision) is increased,
while a~Q2£1n has the opposite effect. In some installations
this may mean the change from single frecision to double
precision and the reverse [R.10.2.3.q, 10.2.4.n, 10.2.7.n]. One
should be careful to distinguish between o1~gg 1.0o which is a
•formula•, and c!Qgg 1.0o, which is a •denotation•
rH.5.1.0.1.b). The value of DQQQ 4o is •false• (R.10.2.3.s]. The
value of obin 5c is that of o101o, i.e., obino operates on
inteqral ~;Iues and delivers--~its [R. 10.2.~:I]. The value of
oabs "a"o is some integral value, which is implementation
dependent, and that of o,!;_~]! ~~§ "a"o is •a•, i.e., o~~f! !~§o
is the identity operation on any character [R.10.1.j,k]. Also,
D~Q§ !EE~ = 1, ~Q~ f~1~~ = Oc [R.10.2.2.f] and D~Q~ JQJ = 5o
f R.10. 2. 8.i], all have the value .true•; in bet, oQ!g ~Q~D is
the identity operation on certain bits values. The operator
cbtbo converts •row of boolean• to bits, e.g., cbtb(true, false,
!IQg) = lQJo [R.10.2.8.1] and o~!~o converts •row-of--character•
to bytes fR.10.2.9.dl. The inverses of oQ!Qc and of.t£o are not

<t> Except for users of, e.g., JOVIAL, SNOBOL and APL.

necessary since tha
The •monadic-operat
and are concerned w
shall not discuss
DBE£, 1wb, ~E~c and
illustrate them by
nlo, so that on1c i
values whose index
an upper bound of •
nl = 2, Y£2 n1 = !~
also dyadic and o1
the •formula• c2 ~E
in the second subsc

There is one
priority 9 (the pro
value of ox i y
imaginary part ~yo
the result of the
(or complex) and th

two integral opera
from bits or bytes,
that c2 elem b
10.2.9.cJ.--Manipul
operators cor, and
of on +: mo Is ciiii­
dividing ono by omo
is an operator on r
a •call•, i.e.,
•operators• are pro
exception of a s
typical example is
the •formula• ox
Another •dyadic-ope
be used with tw
[R.10.2.11.r,t). Af
in the reach of
"abc"o and ot =
elaboration of the

The reader
•operators• have mo
i-times-symbol• ha
four [R.3.1.1.c]
available in this
the TN print chain)

3.12 Confrontations

There are four
strict rule

<t> Here it is mor
lonqer but correct
•true ••

td
.s
:t
1e
Je
1)

;t
te
~d
td
l y
:n
~n

.e
_,

,
he
1Y

:::h
Je
in
ng
:>f
he
ex
j,

ns
le
ne

a
n•
he
on
of
on
§D
o,
5o
is
or
~.
r•
ot

An ALGOL 68 Companion 39

necessary since that job is done by coercion (R.8.2.5. 1.c,d].
The •monadic-operators• ay~, gg~na and a/a operate on semaphores
and are concerned with synchronization (parallel processing). we
shall not discuss them further here [R.10.4]. The operators
cy~.Q, .J:wb, .!!~2a and a]J!.§a are concerned with arrays. We may best
illustrate them by considering the •declaration• c[2:5 !1~!Jin!
n1c, so that on1o is a •variable• referring to a row of integral
values whose index has a lower bound of •2•, which is fi~ed and
an upper bound of •5•, which is flexible. Then DQ£Q n1 = 5, 1~.Q
n1 = 2, Q£2 n1 = ~~ls~, 1~2 n1 = !fQ~c< 1 >. These •operators• are
also dyadic and a1 Q£~ n1 = .!!EQ n1o, for all arrays an1o, while
the •formula• o2 l!£Q n2c delivers the value of the upper bound
in the second subscript position of the array cn2o.

There is one standard •dyadic-operator• o!o or e! c of
priority 9 (the programmer may create more if he wishes). The
value of ox i yo is a complex number with real part cxc and
imaginary part eye [R.10.2.5.f]. In the standard •declarations•
the result of the •dyadic-operator• a;o, •divided-by•, is real
(or complex) and that of c+o is integral (integral division of
two integral operands). The operator a~1~~e delivers an element
from bits or bytes, e.g., o2 elem 101o delivers •false •• Note
that o2 g.J:~! b := !rugc is-not-an •assignation• (R. 10.2.8.k,
10.2.9.c]. Manipulation of bits can be achieved with the
operators DQ£, ~g~. QED and ong!c (R.10.2.8.d,e,h,m]. The value
of on +: me is one modulo erne, i.e., the remainder obtained on
dividing one by cma [R.10.2.3.n]. Apart from the fact that ~Q§D
is an operator on real, integral and complex values, rather than
a •call•, i.e., it is not cabs (x) c, the remainder of the
•operators• are probably familiar to most programmers with the
exception of a set of •operators• of lowest priority •1•. A
typical example is c+:=c, which ve can explain by saying that
the •formula• ex +:= 1c has the same effect as ex := x + 1c.
Another •dyadic-operator• with priority •1• is c+=:o, which may
be used with two •operands• of mode •row of character•
[R.10.2.11.r,t]. After elaboration of the •formula• cs +=: to,
in the reach of D§!Ei.!!9. s :="abc", t := 11 def 11 c, we have cs =
"abc"c and et = 11 abcdef 11 o. on the other hand, after the
elaboration of the •formula• es +:= "g"a, we have as = "abcg"c.

The reader should be careful to note that several
•operators• have more than one representaticn, e.g., the •plus­
i-times-symbol• has three representations and the •up-symbol•
four [R.3.1.1.c] (morevoer, many representations are not
available in this preliminary edition due to the limitations of
the TN print chain).

3.12 Confrontations

There are four kinds of •confrontation• according to the
strict rule

<t> Here it is more convenient to say c2*2 = 4c rather than the
longer but correct statement o2*2 = 4a possesses the value
•true ••

40 An ALGOL 68 Companion

•MODE confrontation : MODE assignation
MODE conformity relation
MODE identity relation ; MODE cast. •

[R.8.3.0.1.a]. The object ex:: y + 2c is an •assignation•, cr
::= ic is a •conformity-relation•, ca ::: be is an •identity­
relation• and creal : ic is a •cast•. Enough has been said about
•assignations• -already in sections 2.9 and 2.10. •Conformity­
relations• have to do with united modes, which we have not ye t
introduced, so it is as well to postpone this discussion to
chapter 7. We shall therefore confine our attention here to
•identity-relations• and •casts•. Before passing to these, we
should see that since a •confrontation• is not a •tertiary•, and
therefore not an •operand•, the elaboration of the •assignation•
cxx 2~ yy := xc is done in the order suggested by c(xx 2~ yy) :=
xe. Such an •assignation• might well be possible if the
•operator• core has been declared in such ~ way that it will
deliver a name:

3.13 Identity relations

There are two •identity-relators•, the •is-symbol•,
represented by c:=:c and the •is-not-symbol•, represented by
e:l:c. A simplified syntax of the •identity-relation• is

identity relation : tertiary, identity relator, tertiary.
but the strict syntax of the Report contains more detail to
account for the balancing [R.6.4.1] of modes.

The elaboration of the •identity-relation• is normally
quite simple. We ask the question whether two names, of the same
mode, are the same. This means, in most implementations, asking
whether two storage addresses are the same rather than whether
they have the same content. As an example, suppose the
•declaration• cf~~! x, yc has been made. The •identity-relation•
ex - yc then has the value •false., despite the possibility
that we may have elaborated the •assiqnations• ex := 3. 14, y :=
3.14c. This is because the •declaration• cf~~! xc (strictly cfgf
£~~! x = lof £~~!c) involves the elaboration of the •generator•,
c!Q£ fg~}c, which creates a name different from all other names
[R.7.1.2.d Step 8]. The same applies to C£~~! yc. Hence, the
name possessed by cxc is not the same as the name possessed by
eye. After the •declaration• cref real a = xc, the name
possessed by cac is the same as the-name-possessed by cxc, but a
different instance of that name. Consequently, the value of the
•identity-relation• ex :=: ac will be •true• and will remain
•true• no matter what assignments are made to cac or to cxc.
Notice that an assignment to cac is at the same time an
assignment to cxc.

Now suppose that the •declaration• c£~! !B! ii, JJ, !B~ ic
is elaborated followed by the •assignations• cii := i, jj := ic.
The •identity-relation• cii :=: jjc possesses the value •false.,
for a similar reason to that explained above, but the •identity­
relation• cjj :=: ic then possesses the value •true•. That this
is so can be seen by a close examination. We present this in
figure 3. 13. we see in the figure at 1 and 2 that the a priori
modes of the •i3entifiers• en each side of the •is-symbol• are

not the same. Since
•tertiaries• of the
begins with •reference­
"dereferencing" [R.8.2.
at 3), whereupon the
•true. (see the figure
speaking, a coercion
mode and the a FOsteric
is therefore absent. Sj
the left or on the rj
alternatives in the
[R.8.3.1.1.a]. The reac
of the •tertiaries•

boo J

r---------
1

strong-reference-to­
integral-tertiary

I
strong-reference-to­

integral-base •••••
I

(coercion) (3)
I (1)

reference-te-referenc
to-integral-base

cjj

0

o o------>---
o

In the case of ojj .-.
strong. This is a r
balancing of modes w hi<

3.14 Casts

The object

is a trivial example oj
enough to illustrate
followed by a •cast-of·
The purpose of a •cas1
clause• into a value o1
example given is tr :
more easily from the • J

Jn•, cr
~ntit y­
~ about
Jrmi t y­
Jt yet
don to
!re to
:se, we
,. , a nil
1ation•
YY) : =

. f the

. t will

1mbol•,
1t ed by

il to

nally
e Sdme
asking
hether

the
a tion•
bility

y : =
y c~g~
ator•,

names
, the
sed by

name
but a

of the
remain
o ex c.
me an

~!!!: i []
: = i c.
alse.,
ntity-

this
llis in
priori
1• are

An ALGOL 68 Companion 41

not the same. Since an •identity-relation• must have
•tertiaries• of the same mode (R.8.3.3.1.a] (each of which
begins with •reference-to•), there is a coercion, known as
"dereferencing" [R.8.2.1.1], of the •base•, cjjc (see the figure
at 3), whereupon the •identity-relation• delivers the value
•true• (see the figure at 4). Observe that there is, strictly
speaking, a coercion on the right also, but since the a priori
mode and the a posteriori mode are the same its semantic effect
is therefore absent. Since the dereferencing may occur either on
the left or on the right, but not on both sides, there are two
alternatives in the strict syntax of •identity-relations•
[R.8.3.1.1.a]. The reader should notice that in this syntax, one
of the •tertiaries• is "soft" and the other is "strong".

boolean-identity-relation ••••••••••••••
I (4)

r-------------------+-------------------, •true•
I I I

strong-reference-to- 1 soft-reference-to-
integral-tertiary identity-relator integral-tertiary

I I I
strong-reference-to- 1 soft-reference-to-

integral-base......... 1 integral-base
I I I

(coercion) (3) 1 (coercion)
I (1) I I

reference-to-reference 1 reference-to-(2)
to-integral-base 1 integral-base

~- ~- ~

cjj ic

0 0 0

0 0

0

o o------>-----o o <---·(identity)--->
0 0

I I
I ..------, I
L---)----1 1----(---J

L-----.-J

Fig. 3. 13

In the case of cjj :=: ic, the cic is soft and the
strong. This is a matter concerned with coercion
balancing of modes which will be discussed in chapter 6.

3.14 Casts

The object
creal : 2c

cjjc is
and the

is a trivial example of a .~;ii• [R.8.3.4. 1.a], but it is good
enough to illustrate that a •cast• consists of a •declarer•
followed by a •cast-of-symbol• followed by a •unitary-clause•.
The purpose of a •cast• is to coerce the value of its •unitary­
clause• into a value of mode specified by its •declarer•. The
example given is trivial because its value could be obtained
more easily from the •real-denotation• c2.0c.

42 An ALGOL 68 Companion

•Casts• play an important role in •routine-denotations•,
which are discussed in chapter 5. We shall see also that they
are used instead of •routine-denotations• for those routines
which lack •parameters•. Otherwise, a •cast• is occasionally
useful to effect a coercion which is not implied by the context.
For example, o~!:±:!!!Sl : "a"o is a multiple value, i.e., a row of
characters with ona element, and objects like o(f~f f~±l : next
of cell) .-. nile are essential to list processing (see
R~11.12). A •cast; may have a •void-declarer•, in which case it
is a •void-cast•, e.g., o:x .- yo. A •vcid-cast• yields no
value. An examination of the syntax will reveal that a •void­
cast• occurs only as a •void-cast-pack• [R.8.6.0.1.b), e.g., o(:
x := y)a, or as part of a •routine-denotation• [R.5.4.1.h),
e.g., o: get bin(stand back, x)o in o([l!!!.!Y.E~ x) : get
bin(standback, x)o [R.10.5.4.2.a]. A •void-cast-pack• is a
•base•, as we have already seen in section 3.8. •Casts• which
are not •voi d-casts• "envelop" [R. 1. 1. b. j] a mode and are
•confrontations•. One reason for the exclusion of •void-casts•
from •confrontations• is the ambiguity which might otherwise
lurk in the object ox :=: yo or ox := :yo.

For those •casts• which envelop a mode, a simplified syntax
is

cast : virtual declarer, cast of symbol, unitary clause.
fR.8.3.4.1.a). A •virtual-declarer• [R.7.1.1] is a •declarer• in
which all •indexers• contain •bounds• which are empty. To find
typical examples of •casts• we need only examine •declarations•
involving routines, of which there are a large number in Chapter
10 of the Report. one of them is

DQ.E ~Q~ = (Q221 a)1nt : ~! a .!~~!! 1 ~!~~ 0 fio
f R.10. 2. 2.f J in which the •cast• is oifl!: !.f a .!.!:!~.!! else 0
_uo.

The elaboration of a •cast• is that of its •unitary-clause•
fR.8.3.4.2), always remembering that the mode of the value
delivered, if any, is that specified by the •declarer• of the
•cast•. Since the a priori mode of its •unitary-clause• is often
not the same as that specified by its •declarer:•, the final
steps in the elaboration of a •cast• often involve some kind of
coercion. For this reason it will appear frequently in our
discussion of coercion in chapter 6.

Because a •cast• is a •confrontation• and therefore also a
•unitary-clause•, it follows that of~~± : £§~! : xo is a •cast•,
but its value is the same as that of n£~~1 : xo. Note that a
•cast• which envelops a mode is not a •primary• or even a
•tertiary•; consequently, 0~~_! n~!!l : XX := 3.14o is not an
•assignation•. The effect perhaps intended could be obtained by
w r it in q o (~~! .E~!! 1 : x x) : = 3 • 1 4 o •

3.15 Proqrarn example

<t> ·rhe ALGOL 60 version of this procedure is
G. F. Schrack.

du € to

An

The following is
which is possessed by c
polynomial whose zero
vector ozc. These zeros
must appear consecuti
the given vector is c(1
will be cz**3 z••
c[1: 3)co .!El w : = (1, 0
cp (w) o will be that of
The existence of a non­
for use upon encounter1

C£f2£ p = (£~!(1:)£Q!£]
¢calculates the coeffic
are the elements of thE
Q~~~ [O:~pQ Z]f~~! i
tthe coefficients arE
~b1!~ i ~ ~p~ z ~Q
Q~g~~ gomp! zi = z(
i! ~.!!! zi = 0
then t a real zeror
--fo!:_ k .f£.Q.!!! i QI ·

a [k] - : = re z i
~!se ¢a pair of CO !

i! i = !!PQ z _!:he)
~!: zi f. f2!!j z[i
real s = re zi • ·
a(i] := o-;
~Q£ k .f£.Q!!! i QI

a[k] -: = t • a
a[1] -: = t

fi ; ¢and now for
~rr~ tthe iteration

tthe coefficients ar
a ~~~o

From c[)£~~! :c
the •cast• of a •routi
c[1±:~~1 : o to ensure t
of mode •row of real
the •declaration• c[O:
•variable• with inde
ozc. The •declaration•
that, for each value
a constant. This avoid
Observe that, in th
•formula• ci+:=1o h
•variable• cia is
•formula• is the name
the name possessed by
cz(i+:=1]o is a •s:
polynomial sought. ThE
zi ** 2c declares
square of the modulus
delivered by the rc
appears as an •expres:

ons•,
they

tines
tnally
ttext.
IW Of

next
(see

. se it
ls no
•void­
. , 0 (:

. 1.h),
: get
is a
which

i are
:asts•
erw ise

:;yntax

er• in
o find
tions•
hapter

else 0

lause•
value

of the
oft e n
final

.ind of
n our

also a
•cast•,
:hat a
even a

1ot an
. ned by

u€ to

An ALGOL 68 Co8panion 43

The following is a •procedure-denotationeCt>. The routine
which is possessed by ape calculates the real coefficients of a
polynomial whose zeros are the elements of a given complex
vector aza. These zeros may be real or complex, but if complex
must appear consecutively as conjugate pairs. For example, if
the given vector is a(1, 0 ! 1, 0 i -1)a, then the polynomial
will be az**3 z**2 + 7 1a. Thus, in the •range• of
a[1:3]CO!El w := (1, 0 i 1, 0! -1)c, the value of the •call•
cp(w) a will be that of a ([]£gal : (1.0, -1.0, 1.0, -1.0))[~0)c •
The existence of a non-local •procedure•, cerrorc, is assumed,
for use upon encountering invalid data.

DP£2£ p = (£§!(1:]£Q!E1 Z)[]£§~1 :
¢calculates the coefficients of the real polynomial whose zeros
are the elements of the vector zt
!!~!~ [0: J!.EQ z]~~~1 a ; a[0) : = 1 ; !.!!!: i : -= 1 ;
tthe coefficients are calculated into the vector a¢
~Ell~ i ~ YE!2 z ~Q
~~gin C0.!!£1 zi = z(i] a[i] : = 0 ;
if i~ zi = 0
then t a real zerot
--fO£ k !£~! i QY -1 !2 1 Q2

a[k] -:= ~~ zi * a[k-1]
~12~ ¢a pair of complex zerost

if i = ~.E~ z !he~ error !i ;
if zi # £2~j z[i+:=1] !h~~ error f!
re~1 s = ~g zi ** 2 + im zi ** 2, t = 2 * !~ zi
a[i] : = 0 ;
fQ£ k !£~! i QI -1 12 2 Q2

a[k) -:= t * a[k-1]- s * a[k-2];
a[1] -: = t

fi ; ¢and now for the next onet i +:= 1
end tthe iteration on it ;

¢the-coefficients are now ready in the vector at
a ~~~a

From c[]£§~! :a, on the first line, to the final ag.ngc is
the •cast• nf a •routine-denotation• [R.5.4.1.b]. It begins with
a[]!§~1 :a to ensure that the value delivered by the routine is
of aode •row of real•. Note the use of the •operator• ayp~c in
the •declaration• c[O :y~ z]£§~1 ac, which creates a vector
•variable• with index running from •0• to the ripper bound of
azc. The •declaration• D£2~.El zi = z(i]c [R.10.2.7.a] indicates
that, for each value of cia in the iterative statement, czic is
a constant. This avoids repeated calculation of nz[i]c later.
Observe that, in the •formula• czi # £2~j z(i+:=1]c, the
•formula• ci+:=1c is elaborated first. rhe value of the
•variable• cia is thus incremented by 1. The value of this
•formula• is the name possessed by oi+:=1c, which is the same as
the name possessed by cia. It is then dereferenced. The object
cz(i+:=1]a is a •slice• whose value is the next zero of the
polynomial sought. The •declaration• D£~~! s = !§ zi ** 2 + !!
zi ** 2a declares a •real-constant• esc whose value is the
square of the modulus of one of the conjugate pairs. The value
delivered by the routine is that of cac; conse1uently cac
appears as an •expression• preceding the final D~.!!~D.

44 An ALGOL 6B Companion

Review questions

3.1 Introduction

a) Is a •cohesion• a •primary•?
b) Is a •closed-clause• also a •tertiary•?
c) Indicate by parentheses the order of elaboration of oa + b of

c[d] - eo.
d) What is the difference between a •statement• and an

•expression•?
e) Is a •base• also a •unitary-clause•?

3.2 Bases

a) Is ox + yo a • b a se • ?
b) How many kinds of • bases• can be distinguished?
c) List all the •bases• in the object

c (a(i 1 > b .Qf c 1 sin (X) I cos (X + pi/2)) c.
d) Is oJ. o a •base•?
e) Is oa(b)c a •call• or a •slice•?

3.3 Identifiers

a) List the •identifiers• in the object ol:ca :=char Qf file Qf
f + "aS" c.

b) What is the mode of axe in creal x := 3. 14c?
c) What is the mode of on2~--In o(1:3, 1:4J!!!! n2 = m2[3:5,

3: 6lo?
d) Do cue and ova have the same mode in the •declaration•

r 1:10Jfh2~ u, [1:1o fJ~!lfE~f vc?
e) Is c$linec an •identifier•?

3. 4 Slices

In the reach of the •declaration• o[1:m, 1:n]f~2J x2, y2c:
a) is cx2(1][1]c a •slice•?
b) is cx2[1]c a •slice• and if so what is the mode of its value?
c) is c.J2gg,!__!! x2 end[1, 1)a a •slice•?
d) is cif i > 0 ~liin x2 ~}§~ y2 fi [1,1]a a •slice•?
e) Which-of the following can be subscripts?

o35o, citem Q!. ao, oi + n * 2o, oi := 2o, ni +:: 2c.

3.5 Multiple values

In the reach of the •declaration• o(1:m, 1:n].!~~1 x2, [1:3Ji!!!
u1 = (1, 2, 3)o:
a) is oulo a •variable•?
b) is ox2[1, 2]o a •variable•?
c) is cu1 [2) :: 2o an •assignation•?
d) is cx2[2][1) .- 3.14o an •assignation•?
e) is ox2[1, 1) := 3.14o an •assiqnation•?

3.6 Trimmers

Using the •declar
a) what is the value
b) what can be said a

cx2[2:3][2,1] = x
c) what is the value
d) what is the value
e) is cx2[i::1:j+::1,

3. 7 Calls

a) Is a cos (x :: pi/4)
b) Is or a ndomo in ex
c) Is 0 cos (X) 0 I ll

d) Under what condi tj
e) Under what conditi

3. 8 Void cast pac

a) Is a •void-cast-p;
b) Is o (: x) : = yo aJ

c) Is ax:=(: y)o a1
d) Is a(: (x)) a a •vo :
e) Is ce£.Qf p := X ::

3. 9 Cohesions

a) Is a •cohesion• a
b) Is a •cohesion• a
c) Is o (x + y) c a •c'
d) Is a[1 :3 }!".ef stru
e) Under what -condit'

3.10 Selections

a) Is a •selection•
b) Is the oao in oa
c) Indicate by paren

oa Qf b [c]c and
d) Is o (a of b) of c
e) Is ca Qf-(b 2! c

3.11 Formulas

a) Is a •formula• a
b) What is the value
c) What is the value
d) Is o4 + :: 2 c a •1
e) What is the valuE

3. 12 Confronta t :

a) Is a •secondary•
b) Is ox1(i:=i+1) a
c) Is a.r~alo a •con :
d) Is ae!"..Qf rando1
e) Is op .- X . -. Y'

f

n

) I

nt

An ALGOL 68 Companion

Using the •declaration• given in 3.5 abcve:
a) what is the value of DU 1[2:)o?
b) what can be said about the •formula•

ox2[2:3)[2,1) = x2[2, 1]o?
c) what is the value of ou 1[: 21!0)[1]o?
d) what is the value of ou1[~2I3Jc?
e) is cx2[i:=1:j+:=1, 3)c a •slice•?

3. 7 Calls

a) Is ccos (x : = pi/4) c a •call•?
b) Is crandomc in ox := randomc a •call•?
c) Is ocos(x > 0 1 x 1 pi/2)c a •call•?
d) Under what conditions is ca (b) o in oa (b) : = CD a •call•?
e) Under what conditions is ca (b) (c) c a •call•?

3.8 Void cast packs

a) Is a •void-cast-pack• a •primary•?
b) Is c (: x) : = yo an •assigna tion•?
c) Is ox := (: y) o an •assignation•?
d) Is o(: (X))o a •void-cast-pack•?
e) Is OE£2f p := x := 3.14o a •declaration•?

3.9 Cohesions

a) Is a •cohesion• a •primary•?
b) Is a •cohesion• a •tertiary•?
c) Is D (x + y) c a •cohesion•?
d) Is cr1:3 ~~f §~fY£!(~~! a, f~~1 b)c a •cohesion•?
e) Under what conditions is oa 2! b := co an •assignation•?

3.10 Selections

a) Is a •selection• a •primary•?
b) Is the Dac in oa of bD an •identifier•?
c) Indicate by parentheses the order of elaboration of

Da ~f b [c)c and of oe 2f g(x)o.
d) Is o (a of b) of CD a •selection•?
e) Is Da 2f-(b 2! c)o a •selection•?

3.11 Formulas

a) Is a •formula• a •tertiary•?
b) What is the value of D2 el~~ Qlrr 5o?
c) What is the value of clwb- 3.14c?
d) Is D4 +:= 2o a •formufa;-and if so what is its value?
e) What is the value of o~(1<2~~g3>4~£5=617>8Qf !!Y~)c?

3.12 Confrontations

a) Is a •secondary• a •confrontation•?
b) Is ox1[i:=i+l] a •slice•?
c) Is c_£~alD a •confrontation•?
d) Is OEf2f randomo a •confrontation•?

45

e) Is cp := x :=: yo an •identity-relation• or an •assignation•?

46 An AlGOL 6B Companion

3.13 Identity relations

In the reach of the •declaration• ai~! i, j
i, j j : = ia :
a) what is the value of oii :=: jja?
b) what is the value of ai : =: j ja?
c) what is the value of ai :~: ja?
d) Is ax ·=· 3.14c an •identity-relation•?
e) Is ox :=: x 1[2]a an •identity-relation•?

3.14 Casts

a) Is a •cast• a •primary•?
b) Is 11!!!! : 3. 14o a •cast•?
c) Is ax : = :yo an •assig na tion• or an •i dentit y-re lation•?
d) Is of1:1]real: 3.14o a •cast•?
e) Is D!:gf i.TI!:; : ii := 2c an •assiynation•?

3.15 Proqram example

a) How many occurrences of a •cohesion• are in this •particul:lr-
program•?

b) How many occurrences of a •slice• are there?
c) Is eta a •constant• or a •variable•?
d) What is the mode of asu?
e) How many occurrences of an • iden ti ty-relation• are there?

4 Clauses

4. 1 Condi tiona! cla1

The •conditic
programming concept
It is present in so1
for a choice in
clausas•, depending
a •conditional-clau:

[]~

or, using another rE

which therefore has
shown in fiqure 4.1.

r------r----
1 I

if-symbol condj
I I
I I
I I
I serial-
1 clause

-I.. __.__

aif a>b

There are two
are noteworthy. The
the sense that it
aJ::fo or c (a, and end
a)a. As a consequenc
and is, a •primar
positions which migh
programming langua
distinction is mad
•conditional-stateme
•conditional-clause•
its value is void
[R.6.0.1.b1<1) and
genuine syntactic r
permits •conditional

c.!.! a > 0
w hie h may be used in

ca 1 : = J:.f a >

(1) Note that rules
present only for th
the language. The no
a • proqram•.

:=

la r-

An ALGOL 68 companion 47

4 Clauses

4.1 Conditional clauses

The •conditional-clause• (R.6.4] is a fundamental
programming concept or primitive pertaining to flow of central.
It is present in some form or other in most languages and allows
for a choice in the elaboration of one out of two •serial­
clauses•, depending on the value of a •condition•. An example of
a •conditional-clause• is

eif a > b then a ~l§g b fie
or, using another representation

c(a> b I a I b)e ,
which therefore has the same meaning. A simplified parse is
shown in figure 4.1.a.

conditional-clause
I

r------r---------------+------------r-----------,
I I I I I

if-symbol condition then-clause else-clause fi-symbol
I I I I I
I I r-------~, r--~-----, I
I I I I I I I
1 serial- then- serial- else- serial- 1
1 clause symbol clause symbol clause 1

-l. _L_ -~-- ..1
__.l. __

.J.. J..

llif a>b !!!~.!! a ~1§~ b fio

Fig. 4. 1. a

There are two features of the •conditional-clause• which
are noteworthy. The first is that such a •clause• is closed, in
the sense that it begins with an •if-symbol•, represented by
aifc or e (e, and ends with a •fi-symbol•, represented by of!o or
e)e. As a consequence of this, a •conditional-clause• can be,
and is, a •primary• and is therefore found in syntactic
positions which might otherwise be considered unusual in some
programming languages. The second is that no essential
distinction is made between •conditional-expressions• an1
•conditional-statements•. The only difference is that, if a
•conditional-clause• is used as a •statement• [R.6.0.1.c), then
its value is voided; otherwise, it may be an •expression•
[R.6.0.1.bl<t> and may deliver a value. There is only one
genu1ne syntactic rule [R.6.4.11. This merging of concepts
permits •conditional-clauses• like

e!! a > 0 !hgn sqrt(a) ~1~~ ~2-12 error f!e
which may be used in a situation like

ea1 :=if a> 0 !h~.!! sqrt(a) gl§g ~2-~2 error fie

<t> Note that rules in the Report marked with an asterisk are
present only for the convenience of the semantic description of
the language. The notions involved never appear in the parse of
a • program•.

48 An ALGOL 68 Companion

Some uses of a •conditional-clause• which might be
considered unusual, but which stem from the fact that it is a
•primary• are: c(p I x I y) := 2.3 , (q 1 cos 1 sin) (x) (
r I x I y) + (s I u I v) c, in which we have used, for
preference, the shorter representations.

A simplified syntax of the •conditional-clause• is
conditional clause :

if symbol, condition, then clause, else clause, fi symbol.
condition : serial clause.
then clause : then symbol, serial clause.
else clause : else symbol, serial clause.

but the strict syntax in the Report [R.6.4.1] should be studiej
also. One should observe that a •conditional-clause• contains
three •serial-clauses• (see figure 4.1. a). Any one such •serial­
clause• may contain •declarations• and forms a •ranye•
fH.4.1.1.el. Since a •serial-clause• may contain more than one
•u~itary-clause•, this means that frequent use of a beg!.!! ~!!9c
p:u.rs (•packages•), as in l\LGOL 60, is not necessary. An example
of a •conditional-clause• containing a non-trivial •condition•
might be:

ci! §!f.!.!!.9. s ; read {s) s = password
!h~!! .9.Q_!Q reqular
~1§~ gQ_!Q irregular
_!;!c

where the value of the •condition• is that of its last
os -= passwor-do.

A •conditional-clause• is elaborated by first elaborating
the •condition•. If the value of the •condition• is •true•, then
the •then-clause• is elabor-ated; otherwise, the •else-clause• is

• t rue•-->--, r------->-------,
I I I

I v
0 (X) 0 X -x)c

I
•false•--------->-------J

Fig.4.1.b

I
I

elaborated (see figure 4. 1.b). In the first instance, the value,
if any, of the •conditional-clause• is that of the •serial­
clause• of the •then-clause•; otherwise, it is that of the
•else-clause•. For example, the •clause•

c (x ~ 0 I x I -x) c
has as its value the absolute value of cxc.

4.2 Simple extensions of the conditional clause

A •conditional-clause• like
nif a then t else if c then d else
--if e-then f-else-g fi-fi fi~---

may occur frequently in-programming-situations.
an e xtension [R.9.4.b] is available whereby the

For this reason
same • clau se•

may also be written
c_!f a then b eJ

The essence --of thE
c~!§fo, if the corre~
representations, the

. c (a I l
wh1ch may be written
. c (a 1
1n the extended lar
of counting cfics so
schematic flow of c
4.2 in the case wher£

r--->-- --1 •

I
c(a 1 b 1:

•false.

possesses t he val'
•condi tion• ceo is nc

A similar exten 1
c!#~!! .!fc may be rep:
el1ded, but this exb

cH ,
ha s the same meaning

c!_f a ! ;
In ot her representat

means the sam e a s

where the symbol ol
if-symbol•. It is al
but no confusion
the elaboration of o
effect of c(a 1:
c)c, but t h e former-

In the strict
contains an •else-c
allows c~ls~ ~~iE fi

cif p
may be written

In the •assignation•
undefined real val
cac is not positive.
to possess some unde

4.3 Case clauses

A case clause j
clause •, intended

be
s a

I (

for

1diej
:a ins
:ial­
lnye•

one
en de

1mple
:ion•

I

ni t•,

ating
then

e• is

alue,
ti"i:tl­

t he

:eason
La use•

An ALGOL 68 Companion 49

may also be written
e!f a !h~n b ~!§f c !hen d ~!§f e !h~~ f ~ls~ g fie

The essence of this extension is that oelse !.fo may be written
c~!§.fe, if the corresponding o!!o is elided: Using the other
representations, the strict language is

o(a I b I (c I d I (e I f
which may be written

g))) 0

e(a I b 1: c I d 1: e 1 fIg)o
in the extended language. This saves the programmer
of counting o.f!os so that they match the number of
schematic flow of control for this •clause• is shown
4.2 in the case where oao possesses the value •false.

I

the bot her
oifcs. A
in-figure
and oc e

r--->----, atrue• r------------->------------1
I I v

e(a I b 1: c I d 1: e f g)o

I
afalse• L)J

Fig.4.2

possesses the value .true•. Note that in this case the
•condition• ceo is not elaborated.

A similar extension (R.9.4.b] exists, whereby the symbols
ctE~Q !fo may be replaced by o!E~!c if the corresponding cfio is
elided, but this extension may not be so useful. Because of-it,

c!.f a the! b iE~E c ~12~ d .fie
has the same meaning as

cif a then if b then c el§~ d .!! .fjc
In other representations-we have-that

c(a 1: b I c 1 d)o
means the same as

c(al(b cld))c ,
where the symbol cl :c is used as a representation of the •then­
if-symbol•. It is also a representation of the •else-if-symbol•
but no confusion can arise. It is worth noting that, provided
the elaboration of cac and cbo involves no side effects, the
effect of c(a 1: b 1 c)cis the same as that of c(a ~ng b 1
c)c, but the former may be faster.

In the
contains an
allows cgls~

strict language the •conditional-clause• always
•else-clause•; however, another extension (R.9.4.a]
~~iE !!c to te replaced by cf!o, so that the clause

c!! P !hen gg_!Q 1 ~l§g §~iE .fie
may be written

oj! P !h~n gQ_!Q 1 fie
In the •assignation• ox := (a > 0 1 sqrt (a)) c therefore, some
undefined real value will be assigned to cxc, if the value of
cac is not positive. This occurs because the D§~j£c will be made
to possess some undefined real value [R.8.2.7.2.a].

4.3 Case clauses

A case clause is
clause•, intended to

also
allow

an extension of a •conditional­
for efficient imflementation of a

50 An ALGOL 68 Companion

certain kind of •conditional-clause•
fre q uently. The •clause•
o!! i = 1 !h~~ x ~!§f i = 2 !h~~ Y g}§f i
may be written

which

c~~§g i !B x, y, z 2~! a ~~~~c
o r in another representation,

c(i 1 x,y,zl a)c

may

rH.9.4.c,dl. rhe flow of contr ol in such a •chuse• is indicate:}

cease

r---->----,-----,-----,----------,
I I I I I
I •1• •2• •3• I
I I
i x, y,

I
z

I
a

L-----L-----L-------------l---)--J
Fig.4. 3

in fiqure 4.3. Observe that c(i 1 x a)o is not a case clause
f o r c ase clauses contain at least two •unitary-clauses• between
the oigo and the oQ~!o.

If the reader is now confused over the use of certain
s ymbol s , the difficulties can be cleared nway by observing that
~ach of the symbols, •if-symbol, then-symbol, else-symbol• and
•fi-symbol• has more than one representation. The
r e presentc1tions are [R. 3. 1.1.a):

• if -symbol• c (if
•then-symbol• cl !hgn
•else-symbol• ol g.J§g

~~§go

i~o
2]!D

•fi-symbol• o) fi g.§~~o
Thi s means that the case clause given above might be written

c~~§g i !hgB x, y, z I a !!C
and, thou~h most humans would find this difficult to read,
computer should not.

,
the

Be cause ole is a representation of the •else-symbol• and
o)c a representation of the •fi-symbol•, the case clause o(i 1
x, y, z 1 ~~!.P)c may be written o(i 1 x, y, z)o, using the
e xte n sio n fR.9.4.a) already mentioned above. Note then, that in
the •assiqnation• ox := (i 1 1.2, 3.4) o, some undefined real
value will be assigned to cxo if oio is not •1• or •2•, but in
the •assignation• o(i 1 x, y) := 3.4o, there may be no
detectable effect [R. 8. 3. 1. 2. c 1 if the value of oic is not • 1 •
or •2•.

There are further extensions of the case clause involving
•conformity-relations• fR.9.4.e,f,g], but we shall delay
discussion of these until •conformity-relations• themselves have
been exp lain ed .

4.4 Repetitive statements

Repetitive statements, such as
cfQ~ i to n gQ sc

I
p

are not mentioned in 1
are in the extender
syntactic position of
example of a repetiti •

It is defined to be t :
o£~!!! !!!! j
m: !! j 5 10

gQ_!Q m f.
gn.Qc

however, the reader w
that the above is a g
details, such as in
considered.

A more illustrat
cfor i froR

This is defin~d to-be
c£gg!n !!!! :
m: !.! (k >

!!!.~!! !!!!
92_!2 m 1

en de
however, this is sti:
wrong effect if i
above repetitive s
operations have be
reader should now ex
fR.9.3.a,b], to noti

and

There are essen
c.!Q! i

cfor
These differ in--t
second does not. In
!~ggc may be elided
more precise in 1
not appear in the •t
cdc, then of or it
•variable• (o}~-in
is hidden from the ·
to it. Also noti•
for each elaboratio
declared within a
Consequently no ass
used in the example

Before leavin
that the •unitary
collaterally [R. E
particular, that a
bound ceo, after
further elaboratioi

i.cate:l

IJ

_J

clause
etween

erta in
'1 that
• and

The

en
,

the

1• and
(i I
ng the
at in
d real
ut in

be no
t • ,.

olving
delay

s have

I
1\

An ALGOL 68 Companion 51

are not mentioned in the syntax of the language. Such statements
are in the extended language [R.9.3.a,b) and can stand in the
syntactic position of •unitary-statements• (R.6.0.1.c). A simple
example of a repetitive statement is

cto 10 do randomo
It is defined to be the equivalent of the •unitary-statement•

o~~in !~! j := 1
m: !! j 5 10 !hen random ; j +:= 1 ;

g~_!Q m !.!
~ngo

however, the reader who consults the Report [R.9.3.a] will find
that the above is a gross simplification and that there are many
details, such as increments other than •1•, which must also be
considered.

A more illustrative example is
of~I i f!.Q~ a ~1 b !2 c ~Q x[i] := sqrt(i)c

This is defined to be the equivalent of
D~~!n !~! j := a, in! k : b, 1= C i
m: i! (k > 0 I j S 1 1: k < 0 I j ~ 1 I !!]~

then!~! i = j ; x[i] := sqrt (i) ; j +:= k
g~_!Q m !..!

en do
however, this is still not the complete story and may give the
wrong effect if it is considered to be the equivalent of the
above repetitive statement in a •serial-clause• in which
operations have been redeclared. With this remark in mind the
reader should now examine the extensions,as given in the Report
[R.9.3.a,b], to notice how all eventualities h:tve been covered.

and

There are essentially two repetitive statements. They are:
o!.Q! i fro~ a ~1 b !2 c ~h!1~ d QQ eo

Df.Q! i fro~ a ~1 b ~~!1~ d gg eo
These differ in that the first form contains a ot.Qo and the
second does not. In both forms Df!Q~ 1c or DQ~ 1c or o~hi!~
!!!!~D may be elided (R.9.3.c (the statement of this extension is
more precise in the Report)] and if the •identifier• cio does
not appear in the •unitary-clause• ceo, or the •serial-clause•
ode, then of.Q! io may be elided. Notice that the control
•variable• (ojo in the above example) of a repetitive statement
is hidden from the progra~mer, so that he may make no assignment
to it. Also notice that the use of ofor io means that oio is,
for each elaboration of ode and oeo,--in •integral-constant•
declared within a range which contains both ode and ceo.
Consequently no assignment may be made to cic. This fact was
used in the examples given above.

Before leaving repetitive statements, we should observe
that the •unitary-clauses• oa, be and occ are elatorated
collaterally [R.6.2.2.a] and once only, which means, in
particular, that a change in the step size cbo or in the upper
bound ceo, after the initial elaboration, will not affect the
further elaboration of the repetitive statement.

52 An ALGOL 68 Companion

4.5 Closed clauses

Some examples of •closed-clauses• are c(x + y) c, o(((a)))c
and c.Qg,g_i!! ~~!!! x, y ; read((x, y)) print(x + y) g__!!.Qc. Note
that either o() c pairs (•packs•) Cl > or DQ~.9i!! g__!!gc pairs
(•packages•) may be used, but that c (x + y g_!!gc is not a
•closed-clause• [R.6.3.1.a, 1.2.5.i, 3.0.1.h,i]. A simplifie1
syntax of the •closed-clause• is

closed clause : open symbol, serial clause, close symbol ;
begin symbol, serial clause, eno symbol.

but the strict syntax of the Report, involving the use of • pack•
and •package•, should be consulted [R.6.3.1.a]. A simple parse
of the •closed-clause•, c (x + y) c, is shown in figure 4.5. Since

closed-clause
I

serial-clause-pack
I

r---------------+-----------------,
I I I

open-syoobol serial-clause close-symbol
I I I

_ _.J. __

c (X + y) c

Fig.4.5

the elaboration of a •closed-clause• is that cf its •serial­
clause•, there is little else to be said about •closed-clauses•,
except perhaps, that a •closed-clause• is a • Frimary• (as is a
•cond i tional- clause•) and that the •serial-clause• of a • closed­
clause• is a •range• (R.4. 1.1.e] and therefcre Flays a role in
the identification of •identifiers• [R.4.1,2,3]. The former
means that, for example, oa * Q~.9i!! b + c ~.!)QC is an acceptable
•formula•, though most programmers would prefer to write it as
C3 * (b + C) c.

4.6 Collateral Fhrases

A •collateral-clause• [R.6.2.1.b,c,d,f] consists of two or
more •unitary-clauses• (•units• [R.6. 1.1.e]) separated by
•comma-symbols• and enclosed between a o () o pair (•pack•) . or a
cQ~Sii!!. ~.!)QD pair (•package•). An example_ of a •co~late~al­
clause• is c(1.2, 3.4)c. It may be used 1n the s1tuat1ons
c[1:2]!:£~1 x1 = (1.2, 3.4)cor c~.QJ!lE1 z = (1.2, 3.4)c. In
the first situation the value of the •collateral-clause• is a
row of values, whereas in the second it is a structure. Thus,
the semantic interpretation of a •collateral-clause• may be
determined by its context. Notice that o(a)c is not a
•collateral-clause•, for, otherwise, there would be an ambiguity
in that c (a)c is already a •closed-clause•.

Cl> Strictly speaking, "pack" and "package" are protonotions but
not paranotions [R.1.1.61, so you will not find them used in the
semantic text of the Report.

An A

A simplified syntax
collateral clause :

open symbol, unit lis
begin symbol, unit H

unit list proper :
unitary clause, commc
unit list proper, co n

but the strict syntax is
it must take care of the
with the balancing of moi
interesting topic in itsE
parse of a •collatera :
•colla teral- clause• is m
preceded by a •parallE
parallel processing is i1

cc

r-----------
1

open- sym bol
I
I
I
I
I
I
I
I

.J.

o(

unit- .

r ---

1
unit

.J.

1 .2

The important featm
order of elaboration of ·
proper• is undefined[R .
the value of c (int i := t
k := i+1)) c could be th i
integral values, such
etc.

In like manner, a • •
or more •unitary-declaJ
with the order of el.
example, that the •a
[1: n]!:g~.J x 1 o may, or ma·
by the programmer. The o
make more sense. Obser~
enclosed ty an •open-s
symbol, end-symbol•
•package•.

i))) c
Note

pairs
not a
ifiel

pack•
parse
Since

erial­
tlses•,
s is a
losed­
le in
former
ptable
it as

.wo or

. ed by
or a

ltenl­
lations
) o. In
is a

. Thus,
nay be

not a
biguity

ons hut
in the

An AlGOL 68 Companion

A simplified syntax of the •collateral-clause• is
collateral clause :

open symbol, unit list proper, close symbol
begin symbol, unit list proper, end symbol.

unit list proper :
unitary clause, comma symbol, unitary clause ;
unit list proper, comma symbol, unitary clause.

53

but the strict syntax is rather more complicated [R.6.2. 1] since
it must take care of the two situations hinted at above together
with the balancing of modes [R.6.1.1.g, 6.2.1.e, 6.4.1.d], an
interesting topic in itself, which should he postponed. A simple
parse of a •collateral-clause• is shown in figure 4.6. If a
•collateral-clause• is used as a •statement•, then it may be
preceded by a •parallel-symbol•, represented by DE~~c, if
parallel processing is intended [R.1 0. 4].

collateral-clause
I

r----------------+-------------------.
I I I

open-symbol unit-list-proper close-symbol
I I I
I r---~----T------, I
I I I I I
1 unit-list-proper 1 1 I
I I I I I
I r----t---. I I I
I I I I I I I
1 unit 1 unit 1 unit I

D (1.2
~

X

Fig.4.6

~ .I.

y) D

The important feature of a •collateral-clause• is that the
order of elaboration of the •unitary-clauses• of the •unit-list­
proper• is undefined[R.6.2.2.a]. This means, for example, that
the value of c(!!!!: i := 0, j := 0, k:= 0 ; (i := j+1, j ::: k+1,
k := i+1 }}c could be that of any one of several rows of three
inteqral values, such as that of c (1, 1, 1} cor c (2, 1, 3) c,
etc •

In like manner, a •collateral-declaration• consists of two
or more •unitary-declarations• separated by ·c~mma-symbols•,
with the order of elatoration undefined. This means, for
example, that the •collateral-declaration• oint n := 10,
[1:n]~~~1 x1c may, or may not, have the effect perhaps intended
by the programmer. The object c.!!!! n := 10 ; [1:n]!~~1 xlc would
make more sense. Observe that a •collateral-declaration• is not
enclosed by an •open-symbol, close-symbol• pair or •begin­
symbol, end-symbol• pair, i.e., neither a •pack• nor a
•package•.

54 An ALGOL 68 Companion

4.7 Serial clauses

•Serial-clauses• are put together frcm •unitary-clauses•
with the aid of •go-on-symbols, labels, completion-symbols• and
•declarations• [R. 6.1. 11. We shall examine this construction by
starting from the simplest constituents. It is expedient, as in
the Report fR.6.1.1.e], to speak of a •unitary-clause• as a
•unit•. For the convenience of our explanation, we introduce the
notion •par-aunit• (not in the Report), for a •unit• which may be
preceded by zero or more •labels•. Thus

ex := 3c
is a •unit•, but for us,

ex .- 3c
and

cl2: x := 3c
are both •paraunits•. The simplified syntax is then:

unit : unitar-y clause.
paraunit : unit ; label, paraunit.
label : label identifier, label symbol.

and although this is a slight deviation from the strict syntax
of the Report, we shall have no essential difference when we are
through.

A •clause- train• [R.6.1.1.h]
separated by •go-on-syrohols•.
examples of •clause-trains•:

is
The

one or- more •paraunits•
following ar-e ther-efore

ex := 3c
cl2: x : = 3c

cl1 : y := 2 ; x :=
copen (myfile,"abc", tapeS) ; restart

fR.10.5.1.2.b, 10.5.2.2.b]. We may now
syntactic rule, viz.,

clause tr-ain : paraunit ;

3c
: get(myfile,name)c
add another simplified

clause train, go on symbol, paraunit.
(cf., [R.6.1.1.h]). The semantics of a •clause-train• is simple.
The elaboration of the •units• proceeds from left to right,
i.e., in the normal sequential or-der, as in most programming
languages.

A •suite-of-clause-trains• [R.6.1. 1.f,g] consists of one or
more •clause-trains• separated hy •completers•, where a
•completer• is a •completion-symbol•, r-epr-esented by c. c,
followed by a •label•. The following are ther-efore examples of a
•suite-of-clause-trains•:

c x : = 3c
ell: y := 2 ; x := 3c

c(i > 0 1 11 I X:= 1). 11: y := 2; x := 3c
A simplified syntax of a •suite-of-clause-trains• is

suite of clause tr-ains : clause train ;
suite of clause trains, completer, clause train.

completer : completion symbol, label.
[R.6.1.1.f,g). The semantics of a •suite-of-clause-tr-ains• is
dr-amatically different. The effect of the •completer-•, as
opposed to the •go-on-symbol•, is to force the completion of the
elaboration of the •serial-clause• containing it and to yield,
as the value of that •serial-clause•, the value of the •unit•

An

most recently elabora
value of cic is •-1•, t l
the value of ex := 1c
is not elabor-ated; otheJ
fact, the effect is the
3 I x := 1)c. one migh
may be re-written
redundancy in the langu.
theory, the example
Cf.Q!: k !.Q Y£.!1 s gQ (c :
[R.10.5.1.2.n], shows
tool in practical pr-ogr<
of the retur-n sta tem1
languages the return
(subroutines, functions)

A •ser-ial-clause•
•suite-of-clause-trains •
and;or •statements• but
Examples of •serial-cla•

[] 1 "
[] (t" > .5 I 11 I

cfea! x, v (r > • 5 I
or .-

(r < .5 I 11 I
and

creal r
(r < • 5-T-1 1 1

A simplified syntax of •
serial clause : suite

declaration prelude
declaration prelude SE

declaration prelude
declaration prelude.

declaration prelude :
statement prelude, ~

single declaration :
unitary declaration

statement prelude : ur
statement prelude, 1

The r-ules just giver
[R.6.1.1.a,b,c,d]. The 1

the Repor-t to observe he
been carried through tl
be necessary when •compJ

The elaboration c
protection [R.6.0.2.d]
declared within it. The
example, all •identifi
cannot be confused with
of ALGOL 60 or PL/I wi]
but the reader is warne(
meaning in ALGOL 68 (R.2

- cla uses•
bols• and
ction by
nt, as in
a• as a
oduce the
ch rna y be

ct syntax
en we are

araunits•
therefore

me) o
im{:li fied

s simple.
to right,
ogramming

of one or
where a

by c.o,
ples of a

:r ai ns• is
!ter•, as
.on of the
to yield,

1e •unit•

An ALGOL 6B Companion 55

most recently elaborated. In the last example above, if the
value of cic is •-1•, then the value of the •serial-clause• is
the value of ox := 1c and the •clause-train• cy := 2 ; x := 3c
is not elaborated; otherwise, it is the value of ex .- 3o. In
fact, the effect is the same as that of c (i > 0 1 y := 2 ; x :=
3 1 x := 1)c. One might think that any •suite-of-clause-trains•
may be re-written as a •conditional-clause• (suggesting
redundancy in the language) and though this may be true in
theory, the example
CfQ! k !Q y~ s gQ (c = s(k] I i := k ; 1) ; !~!§~ . 1: truec
(R.10.5.1.2.n], shows that the •completer• is indeed a useful
tool in practical programming. It plays a similar role to that
of the return statement in PL/I or FORTRAN, though in these
languages the return statement applies only to procedures
(subroutines, functions).

A •serial-clause• (R.6.1.1.a] is, roughly speaking, a
•suite-of-clause-trains• preceded by zero or more •declarations•
and;or •statements• but these •statements• may not be labelled.
Examples of •serial-clauses• are

ex : = 3c
cl1: y := 2 x := 3c

c(r > .5 1 11 1 x := 1) • 11: y := 2; x := 3c
cfea! x, y (r > • 5 1 11 1 x : = 1) • 11: y : = 2 ; x : = 3c

cr := random !~~! x, y ;
(r < .5 1 11 1 x := 1) • 11: y := 2 x .- 3c

and
cr~~! r r .- random ; real x, y

(r < • 5 1 11 1 x : = 1) • 11 : --y-: = 2 x : = 3 c
A simplified syntax of •serial-clause• is:

serial clause : suite of clause trains ;
declaration prelude sequence, suite of clause trains.

declaration prelude sequence : declaration prelude
declaration prelude sequence, go on symbol,
declaration prelude. ~

declaration prelude : single declaration, go on symbol
statement prelude, single declaration, go on symbol.

single declaration :
unitary declaration ; collateral declaration.

statement prelude : unit, go on symbol ;
statement prelude, unit, go on symbol.

The rules just given are close to those in the Report
[R.6.1.1.a,b,c,d]. The reader should now examine the rules of
the Report to observe how the metanotions •MODE• and •SORT• have
been carried through the syntax and that balancing of modes may
be necessary when •completers• are present (R.6.1.1.g].

The elaboration of a •serial-clause• begins with the
protection [R.6.0.2.d] of all •identifiers• and •indications•
declared within it. The protection is done to ensure that, for
example, all •identifiers• declared within a •serial-clause•,
cannot be confused with similar •identifiers• outside it. Users
of ALGOL 60 or PL/I will recognize this as the matter of scope,
but the reader is warned that the word "scope" has a wider
meaning in ALGOL 68 [R.2.2.4.2].

56 An ALGOL 68 Companion

4.8 Program example

The •procedure-denotation• which follows possesses a
routine which expects a row of integral values which are the
coefficients of the polynomial

ca[O)*x**n+a(11*x**(n-1)+ ••• +a(n]r
It then finds all the rational linear factors (those of the form
p*x-g, where p and q are integral). It delivers an integral
result, which is the de g ree of the residual polynomial, whose
coefficients remain in cac. The number of linear factors is in
ere, any constant factor i s in ccc and the factors cu[i]*x-v[i]c
are found in the row of integral values cue and eve C1>.

D£!2£ factors= (~~f[O:l!n~ a ¢the coefficients of the given
polynomial¢, ref int r ¢for the number of rational linear
factors¢, c itor the constant factor¢, r,gf[J!.n! u, v ¢for
th e linear factors (u(i]*x-v[i]) , 1~i~r!l'!) int :

~!~!~ in! n := ~E~ a tthe degree of the give~-polyno m ial¢;
r := 0; c := 1; ¢initialization!!'!
~.hi!! a[n] = 0 Q2 rtremove the common power of x¢

~!~i!! u[r +:= 1] := 1 ; v(r] := 0 ; n -:= 1 gng
!2~ P !2 ab~ a[O] Q2

if a[O] +: p = 0
!.hgn tp divides a[O]¢
i~! q := 0 ; !.h!!! (q := A~~ q + 1) ~ !t~ a[n) Q2

if a[n) +: q = 0
!.h!!! ¢q divides a(n]¢
!!!! f, g ¢for temporary storage laterrt ;

if q I 1 !!!Q p = 1
then ¢look for a constant factor¢
MORE : !2£ j !!2! o 12 lm g2 n-1

!.! a[j) ~= q 1 0 ~
!hen ¢q does not divide a(j]¢
g2_!2 NOCONSTANT f! ;

¢remove the constant factor q¢
fQI j !I2~ o !2 n QQ a(j] +:= q ; c •:= q ;
¢q may be a multiple factor so¢ ~Q_!2 MORE
f! tend th e search for a constant factor¢ ;

NOCONSTANT : ¢try (p*x-q) as a linear factor¢
g : = 1 ; f . - a(0 1 !l'!tr y x = q I p ¢

!2~ i !2 n Q2 f . - f * q + a[i) * (g *: = F)
if f = 0
!.hgn ¢ (p*x- g) is a factor¢
uf r +: = 1] : = p ; vr r] : = q n - : = 1 ;
I2I i fi2~ 0 !2 n Q2 ¢compute tha residual¢

~gg!..!! I!! i~! ai = a[i] ;
ai : = f : = (a i + f * q) + p end

(n = 0 I REDUCED I NOCONSTANT_)_
~.!~g ¢if we are here, then (p*x-q) is net a factor
so try (p*x+ q) ¢ ((q : = - q) < 0 I NOCONSTAM T)

c 1} This procedure is derived from algorithm number 75 in the
Communications of the As soc. for Computing Machinery, Vol
5 (1962) 48 , r evised by J.S.Hillmore Vol 5 (1962) 392 and further
revised for th e v e rsion given above.

An

! ! tend e lse p a
f i ¢e nd it e r a tion

! ! - ten d itera tion o
REDUCED : (n -= 0 I c
¢t he de gree of the r e
_!!!Q C

In th e range of t
< 1 , - 1 , 2 , - 2 > > r ~o 1, i n

a •cal l• o f t he above •
c k := f actor

whe r eupo n we s hould ha v
num ber = 1, c o nstant =
the fa cto ring

c x**3 - x** 2
Observe that in the • cl
• - (a i + f * g) +
sub scrip t c alculation ,
the whim of the compile
o f which there may
divid e nds. Note also th
*:= p)c, which replace
version.

4.1 Conditional cla

a) What is the value of
b) Is c.!_f X (0 !!!~!! gg
C) Is c (X) 0 I a I b
d) Is c a 2f (X > 0 I l
e) Is c (r I m I n) <
f) Is c .!_f X > 0 !!!~!! X

4.2 Simple ex ten sic

a) What is the value of
b) What is the value o1
c) What is the value oJ
d) Simplify the foll o w:

c i f p t hen a else : .t!-.fie:---- -- -- .
e) Re move the extensioJ

4. 3 Cas e c lauses

a) Is c (1 I 2 1 3) c
b) What ar e all the re1
c) What i s the val ue o :
d) What is th e value o :
e) Is c (2 1 a, b, c) !

4.4 Repetitive sta

Q

..

11

·
~

I
~

l

135)~ ;)._ cf ~ or ~of'~
c~~

Ybvt +. vlP <; cL, -~ 1D{- S~ ·.fa (;, {{ DuJ S ~-v,J ~ (> S ~ ()c) ;J
,171J-.._ JU. ~ '

!_3. _ lvHl L - n~ l:J

~~ 8'3 &, '7 (~) ~ ': ·~ - ~ ~ a!vu~ . a:z_,~
------------- t~~

..\;(~ 8'/ {.!/ fb)(c) ~~~ z& ~ ~
-/~ >?rp~ N/~,,, -/o -k ~~ (;-{,~

cid~~.
7.4 + 8 * I<!! I =P Rl/, 1/ ~

R jO,i), 2,2,~) ~ /0,- -s. 2, 2.); ~
- .J

f 37i f§ . ~ cl.+f- r.efre'5~ (f euvl ~ ~
3./1

..---~-~/1~- ~~~ '7 - e._) ~ 5 -~-::-:::------

~~~ !w~ . ..<-~ ~ fj:~ (err- ~ ~ --~ 
1/J C-{7- \ (t) I 

... 



;es a 
the 

form 
:egral 
whose 
is in 
v[ i ]o 

ren 
tr 
or 

'• . , 

An ALGOL 6B Companion 

f! tend else part¢ 
fi tend iteration on q¢ 

f! tend iteration on p¢ ; 
REDUCED: (n = 0 I c *:= a[O]; a(O] := 1); 
¢the degree of the residual polynomial is¢ n 
g!!£D 

57 

In the range of the •declaration• o[0:3J!.!!! a1 := ([ ]i..!!!.: 
(1, -1, 2, -2))[aO), .!!!! k, number, constant, [ 1:3J.!!!!. rn1, n1o, 

a •call• of the above •procedure• might be 
ek := factors(a1,number,constant,m1,n1)e , 

whereupon we should have ak = 2, a1 = ([]!.!!!. :(1, 0, 2, O))[(i)O], 
number = 1, constant = 1, m 1 = ( 1) , n 1 = ( 1) c, corresponding to 
the factoring 

ex**3 - x**2 + 2*x - 2 = (x**2 + 2) (x - 1) a 
Observe that in the •clause• oEggi!! E~K i.!!!. ai = a[i] ai .- f 
• - (ai + f * q) + p ~.!!Qe, the programmer may optimize his 
subscript calculation, rather than leave this delicate matter to 
the whim of the compiler writer. On a non-optimizing compiler, 
of which there may be many, this possibility has clear 
dividends. Note also the •assignation• ef := f * q + a(i] * (g 
*:= p)e, which replaces two statements in the original ALGOL 60 
version. 

Review questions 

4.1 Conditional clauses 

a) What is the value of a ( 0 < 0 1 1 i 2 1 3 )e? 
b) Is eif x < 0 !.!!~~ gQ_i2 errore a •conditional-clause•? 
c) Is e( x > 0 1 a 1 b) 2! co a •selection•? 
d) Is ea 2f ( x > 0 1 b 1 c ) c a •selection•? 
e) Is c ( r 1 m 1 n ) < ( s 1 i 1 j ) c a •formul a•? 
f) Is eH. x > 0 !.!!~~ x g.J:~g y .!i := 3.14e an •assignation•? 

4.2 Simple extensions of conditional clauses 

a) What is the value of D ( 1 < 2 I : 3 < 4 5 I 6 ) e? 
b) What is the value of e ( 1 ) 2 I : 3 < 4 5 I 6 ) []? 
c) What is the value of [] ( !.E!!g I 5 I 4 ) + ( !~!.§~ I 3 I 6 ) o? 
d) Simplify the following using the extensicns: 

eif p !.h_g.!! a ~!.§~ !f q thg!! if r _!hen b _g!§_g c f! ~!~.§ ~~i.E 
!!-f:!_e. 

e) Remove the extensions in e ( a I : b I c I : il I e ) IJ. 

4. 3 Case clauses 

a) Is e( 1 1 2 1 3 )e a case clause? 
b) What are all the representations of the •if-symbol•? 
c) What is the value of e ( 2 1 3, 4, 5 1 6 )e? 

the d) What is the value of c( 0 I 3, 2, 1 I 2 )c? 
Vol e) Is c ( 2 1 a, b, c) Qf de a •selec tion•? 

1rther 
4.4 Repetitive statements 



58 An ALGOL 68 Companion 

In each of the following, is the object a repetitive 
statement, and if so, how many times is the •unitary-clause• ceo 
elaborated? 
a) DfQ!: i Q2 e ~E!!~ { i < 9 )c 
b) ofQ!: i !2 10 Q! 2 QQ ec 
c) ado eo 
d) o~~!1~ !~1~~ do eo 
e) c!Q 0 do eo 

Comment on the scopes of oic in the following: 
f) ofQ!: i f£2~ QY 1 !2 10 Q2 i := 2 * i + 1o 
g) o!!!! i : = 5 ; !Q! i f£2.!!! 1 Q1 i !Q i - : = 1 Q2 a[ i] : = i * i c. 

4.5 Closed clauses 

a) Is o { x / y ) o a •closed-clause•? 
b) Is o (p 1 1 ) c a •closed- clause•? 
c) Is o { x := 1 ; y := 2 ; z ) := .lc an •assignation•? 
d) Is oif x := y ; z := 2 fie a •closed-clause•? 
e) Is c~~g_i_.!} x := 1 y :=-2 )o a •closed-clause•? 
f) Is o{ a ; b , c) o a •closed-clause•? 

4.6 Collateral phrases 

a) Is o{x)o a •collateral-clause•? 
b) Is o {1 ; 2 , 3 ) o a •collateral-clause•? 
c) Is c {1 1 2 , 3 ) o a •collateral-clause•? 
d) What is the value of o{"a", "b", "c") + ("d", "e")o? 
e) Is it possible that the value of 

o(i!!! i := 2, j := 3; (i +:= j, j +:= i))o 
might be the same as that of c(7,5)c? 

4.7 Serial clauses 

a) Is oxo a •serial-clause•? 
b) Is o ( p 1 x 1 1 ) • 1: ho a •serial-clause•? 
c) Is o3.eo a •serial-clause•? 
d) Is a(x := 1; y := 2)c a •clause-train•? 
e) Rewrite the following •conditional-clause• as a •serial­

clause• containing a •completer•. 
c ( x Q!: y 1 n : = 1 ; r 1 n : = 2 ; s ) o 

4.8 Program example 

a} How many occurrences of a •conditional-clause• are there in 
this •particular-program•? 

b) What is the mode of oaa? 
c) What is the mode of oaio? 
d) How many occurrences of a •closed-clause• are there following 

the •label• oNOCONSTANT :c? 
e) How many occurrences of a •collateral-clause• are there? 

An J. 

5 Routine denotations anc 

5.1 The parameter mechani 

We begin this chaptt 
the •declaration• and us' 
?as two •parameters• 1 
1ncrement the •real-vari. 
ALGOL 68 the defining ocr 
•identity-declaration• 

. D.Ef:.Q~ up = (£~, 
and 1ts •call• might be 
60, a procedure with sim 

D.Ef:Q~~QY!:~ up (a, h) 
and its procedure cal 
V)c. In PL/I the same pr 

UP: PROC( 
~nd its call, CALL UP(X, 
1t would be 

SUBROUTINE UP(A, B 
A = A + B 
RET OR N 
END 

with call, CALL UP(X, 2. 

We have described 
in order that its intenc 
reader will notice u 
ALGOL 60 terminology, i~ 
by value". This has 1 
fact that in the •call• 
and c2o is passed by va : 
are passed at the t: 
"parameter mechanism"· 

We shall not descr 
i~ other lanquages, excr 
f1nd this to be the mr 
in_ the study of program 
ph1losophy and usage, w 
hope to show, in this 
ALGOL 68 is exceptio 
proqrammer to state 
rather ~han to rely upo 
~he wh1rn of an implem 
1nvolved beyond those 
~hapters. A thorough un 
1s all that is neede 
for spending so much tj 
The ALGOL 68 parameter 
loqical application 
internal object, known 
possessed by a •routine 



L t ive 
• oe o 

* i c. 

serial-

.here in 

,nowing 

ce? 

An ALGOL 68 Companion 59 

5 Routine denotations and calls 

5.1 The parameter mechanism 

We begin this chapter with a simple illustrative examfle of 
the •declaration• and use of a nonsense •procedure• oupc which 
has two •parameters• oao and abo, and whose effect is to 
increment the •real-variable• oac bj the •real-constant• obo. In 
ALGOL 68 the defining occurrence of such a •procedure• is in the 
•identity-declaration• 

DE£Qf up= (£~f £~~!a, £~~! b) : a +:= be 
and its •call• might be oup(x, 2)c or oup(x1[i], y)o. In ALGOL 
60, a procedure with similar effect would be declared by 

OE£Qfg.Qy_£g u·p(a, b) ; Y~!g,g b ; E~~l a, b ; a := a + be 
and its procedure call might also be oup(x, 2)c or oup(x1[i], 
y)o. In PL/I the same procedure might be written 

U P : PRO C (A, B) A = A + B ; END ; 
a n d its c a 11 , C A L L UP ( X , 2 E 0 ) or C A L L UP (X 1 (I ) , ( Y ) ) • I n F 0 R T R A N 
it would be 

SUBROUTINE UP(A, B) 
A = A + B 
RETURN 
END 

with call, CALL UP(X, 2.0 ) or CALL UP (X1 (I), Y). 

We have described this frocedure in more than one language 
in order that its intended effect should be clear to all. The 
reader will notice that we are concerned with that which, in 
ALGOL 60 terminology, is known as a "call by name" and a "call 
by value". This has become the accepted way of describing the 
fact that in the •call• cup(x, 2)o, axe is passed by name to oao 
and c2o is passed by value to obc. The manner in which values 
are passed at the time of a •call• is generally known as the 
"pa .rame ter mechanism"· 

we shall not describe here the various parameter mechanisms 
in other languages, except to say that the student is likely to 
find this to be the most confusing and perplexing subject area 
in the study of programming languages. Each language has its own 
philosophy and usage, with treacherous traps for the unwary. We 
hope to show, in this chapter, that the parameter mechanism of 
ALGOL 68 is exceptional in its clarity, encouraging the 
programmer to state precisely the mechanism he wishes to use, 
rather than to rely upon the conventions of a given languag e or 
the whim of an implementer. There are essentially no new ideas 
involved beyond those which we have encountered in earlier 
chapters. A thorough understanding of the •identity-declaration• 
is all that is needed. The reader may soon wish to forgive us 
for spending so much time on the explanation of it in chapter 2. 
The ALGOL 68 parameter mechanism is defined in terms of a 
logical application of the •identity-declaration• to that 
internal object, known as a "routine", which is the value 
possessed by a •routine-denotation•. 



60 An ALGOL 68 Companion 

5.2 Routine denotations 

The ob-ject ~ · 
o((:£~!: !:~~1 a, f~i!! b)/.. : t a +:= tf, o 

is an example of a •routine-denotation• [ R. 5. 4. 1. a] and is 
essPntially what stands on the right of the •equals-symtol• in 
the •declaration• of oupc given in secticn 5.1 above. One may 
notice that the enclosing symbols o(o and o)c have been emitted 
in section 5. 1, but this is only because of an extension 
fR.9.1.d] which allows such omission in this situation. A 
•routine-denotation•, like any other •denotation•, possesses a 
value, a routine, which is an internal object. This internal 
ob-ject is a certain sequence of symbols, easily derive1 
f R.5.4.2] from the •denotation•. For example, the routine 
possessed by ~m~ 

o((f~f I~~1 a, I~i!! b>t:\a +:= b D 

i s 
• (!:~.! I§i!! a = ~.!s!E• I~i!! b = ~.n.Q ; (a +:= b) l • 

and it is important to notic e that it has the shape of a 
•closed-clause•, in which each of the •parameters• cac and obo 
forms part of an •identity-declaration•. 

As we have seen in section 2.5, an •identity-declaration• 
causes the value of its •actual-parameter• (the part to the 
right of the •equals-symbol•) to be possesse d ty the 
•identifier• of its •formal-parameter• (the •identifier• to the 
left of the •equals-symbol•). This means that in the •identity-
declara tion• ~a. 

D.Q.£.2~ u F = ((I~!: !:~!!! a I f~~! b)r ~ + := b 0 
the •identifier• aupc is made to possess the routine 

•(!:§! !:~!!:!:a= ~.!s!£, I§!!.! b = ~.!s!.E ; ( a+:= b) • . 
Figure 5.2 shows a simple parse of this •identity-declaration•. 
The •routine-denotation• is shown at 1 and the routine which it 
possesses at 2. After the elaboration of the •identity­
declaration•, the •identifier• oupo, possesses the same routine 

declaration 
I 

r----------T--------i-----------------, 
I I I 

formal-parameter equals-symbol actual-parameter 
I I I 

----~--- I --------------------------i---------(1) 
o.QIQf up ( ( !:§! f~i!! a , !:~2! b >( : .(a +:= bJ ) o 

T- --------------T---------------------
(.3) : (2) 

: r---------------------i--------------------------, 
: I• ( Eg!: .!:~~! a = ~!i£, _!:g~! b = ~!i.E ; ~a +: = b) ) • I 
: L------------------------------------------------J 

r----i-------------------------------------------, 
I• ( !:~f .!:~~! a = ~!!£, I~!!! b = ~!s.iE ; \_a +:= b) l •I 
L------------------------------------------------J 

Fig.5.2 

An 

(see fiqure at 3). Thee 
now easy to describe. I 
in a copy of the routine 
to elaborate the resulti 

o(ref real a 
as if · ---l.t were -a-;clo 
•call• cup (x, 2 ) c. 

It is perhaps now c 
declaration• is known 
part as its •actual-para 
roles which they pl . 
th · ay 1 

e ·~dentity-declarati 
mechanl.sm, but its powe 
must of necessity provi 
p~ogrammer to use as h 
IDl.qht usefully be used t 
working with the vector 

rather than 
DX1i := 

DX1( i) := ] 

5.3 More on parameters 

It is perhaps worth 
created by the parame 
5.1. The •closed-clause• 
•call• aup(x, 2)c is 

o (f~f real a , 
and the elaboration f 

follows its •open-symbol 

in figure S.J.a. DuriJ 
2~c, oaa possesses the S< 

fl. gu re 5. 3. a at 1) , ' 
possessed by o2c (see thE 
•formula• oa +:::be has 1 
+:= 2o. Both oao and 
•reference-to•, a reguin 
•operator• o+:::c [ R.lO. 
were aup(.x, y)o, then tl 
•declaration• oreal 1 
dereferencinq of oyo; dei 



] and is 
itol• in 

one maY 
omi t ted 

xtens ion 
tion. A 
;sesses a 
internal 

derivei 
r outine 

hape of a 
and obo 

.laration• 
to t he 
ty the 

• to the 
identity -

ration•. 
which it 

•idEntity­
me routine 

An ALGOL 68 Companion 61 

(see fiqu~e at 3). The elabo~ation of the •call• oup(x, 2)c is 
now easy to desc~ibe. Its effect is to replace the two 02~!Eos, 
in a copy of the ~outine, by oxc and o2c ~espectively a nd then 
to elabo~ate the resulting exte~nal objec~ 

c (£~.! fg~1 a = x, E~~1 b = 2 ;1 a +: = ~ c 
as if it were a •closed-clause• standing in the pla c e of the 
•call• cup (x, 2) o. 

It is pe~haps now clea~ why the left part of an •identity­
decla~ation• is known as its •formal-pa~amete~· and the ~ight 
part as its •actual-paramete~•, for these are precisely the 
roles which they play in the paramete~ mechanism. Not only does 
the •identity-decla~ation• play a central role in such a 
mechanism, but its power, which the implementer of any language 
must of necessity provide, is placed in the hands of the 
p~og~amme~ to use as he sees fit. Thus, of~! f~~1 x1i = x1[i]c 
miqht usefully be used to optimize add~ess calculation while 
working with the vector cxlc. An example might be 

ox1i := 3 * x1i + 2 * x1i ** 2c 
rather than 

cx1[i] := 3 * x1[i] + 2 * xl[i] ** 2o 

5.3 More on parameters 

It is perhaps worth dwelling on the name-value ~elationship 
created by the paramete~ mechanism for the example in section 
5.1. The •closed-clause• which is elaborated as a result of the 
•call• oup(x, 2)c is 

c(£~! E~~1 a= x, f~al b = 2 ; a+:= b)c 
and the elaboration of the •collateral-decla~ation• which 
follows its •open-symbol• results in the relationships depicted 

0 0 

o o(1)o o 
0 0 

L-)T(-.J 

r-~--, 
I I 
L-------' 

Fig.S.J.a 

fg~1 b = 2o 

( 2) 
r-----'--, 
I • 2• I 
L-------' 

~----, 

I •2 • I 
'------' 

in figure 5.3.a. During the elaboration of the •call• cup(x, 
2) c, cao possesses the same name as that possessed by nxo (see 
figure 5.3.a at 1), and cbo possesses the same value as that 
possessed by o2o (see the figure at 2). This means that the 
•formula• ca +:= be has the same effect as if it were written ox 
+:= 2o. Both can and oxc have a mode which begins with 
•reference-to•, a requirement of the left •operand• of the 
•operator• c+:=c (R.10.2.11.e]. Note also that if the •call• 
were oup(x, y)o, then the •closed-clause• would contain the 
•declaration• c_!;g~1 b = yo and this would involve a 
dereferencing of eye, depicted in figu~e 5.3.b at 1. Observe, in 



62 An ALGOL 68 Companion 

this figure, that aye , considered as an •identifier•, possesses 
a name of mode •reference-to-real• (see 2) but considered as an 
•actual-parameter•, it possesses a value of mode •real• (see J). 
The coercion occurs at 1. We may say, in general, that if a 
•parameter• cac is considered as a •variable• referring to a 
value of mode specified by O!a, e.g., if an assignment is to be 
made to aao, then the •formal-parameter• should be crgt ! ao, 

identity-declaration 
I 

r------------------T~------------------~ 
I I I 

formal-real-parameter equals-symbol actual-real-parameter 
I I I 

r----L-------, I strong-real-base 
I I I I 

formal-real- real-mode- I (coercion) ( 1) 
declarer identifier 1 I 

I I I reference-te-
l I I (3): real-base 

~ 

b 

r--~---, 

1•3.14•1 
l_. _____ J 

~ 

yo 

r---L--, o 
1 •3. 14•1--<--o o (2) 

0 

Fig.5.1.b 

but if obc is u~ed only as a •constant• of mode o!c, then the 
•formal-parameter• may be C! be. 

5 .4 The syntax of routine-denotations 

A •routine-denotation• consists of a •formal-parameters­
pack• followed by a •cast•, both together enclosed between the 
symbols o (a and c) c. Thus in 

c( (£~! £g~1 a, £~~.! b) : a +:-= b) o 
the object o(£~.! !:g~.! a, !:§al b)c is the •formal-parameters­
pack• and o: a +:= be is the •cast•. A simplified syntax of a 
•routine-denotation• is 

routine denotation : 
open symbol, formal parameters pack, cast, close symbol. 

formal parameters pack : 
open symbol, formal parameter list, close symbol. 

formal parameter list : formal parameter ; 
formal parameter list, gamma, formal parameter. 

qomma : qo on symbol, comma symbol. 
but the strict syntax (R.5.4.1] contains metanotions which 
ensure that the number and the modes of •parameters• in •calls• 
match those in the •routine-denotation•. Figure 5. 4 shows a 
simple parse of a •routine-denotation•. We have already alluded, 
in section 3.7, to the fact that •actual-parameters• in a •call• 
may be separated by either a •go-on-symbol• or by a •comma­
symbol•. Now that we have seen that the elaboration of a •call• 
amounts to the elaboration of a •closed-clause• in which the 

•formal-parameters• 
transformed into •ide 
that a •comma-symbo 
•comma-symbol• of a • 
the •parameters• a 
symbol•, on the other 
are elaborated seri 

...----------· 
I 

open­
symbol 

I 

fo 

I r-------· 
I 
I 
I 
I 
I 
I 
I 
I 
I 
~ 

c ( 

I 
open-

symbol 
I 
I 
I 
I 
I 
I 

r--· 
I 

formal­
pa rame tt 

I 
~ ----.L __ _ 

f~.! fea, 

• formal-parameters-pa< 
0 

may be transformed in · 
oint n 

but the •formal-param• 
0 

may be transformed in l 
. cint n 

Wh.1C~ is more Useful 
Part1cular choice 0 1 
parameters• is thE 
s~parates the •actual· 
s1gn if icance. 

The semantics o j 
ho~ the routine which 
po1~ts are, that an ' 
.1s 1nserted after e · 
symbol• which begins ; 
that its •close-syml 
more. precise sta tem• 
stud1ed. 

A further exam plf 
o ( ( re 

where the secon d o~ 



esses 
s an 
e 1) • 
if a 

to a 
to be 

a o, 

:ter 

, ) 

en the 

oeters­
:en the 

a: eters­
i x of a 

ol. 

which 
•calls• 

:hows a 
11luded, 
1 •call• 
•comma­
•call• 

1 ich the 

An ALGOL 68 Companion 63 

•formal-parameters• of the •routine-denotation• become 
transformed into •identity-declarations•, it is at once apparent 
that a •comma-symbol• separating •formal-parameters• becomes a 
•comma-symbol• of a •collateral-declaration•. This means that 
the •parameters• are elaborated collaterally. The •go-on­
symbol•, on the other hand, would result in •declarations• which 
are elaborated serially. To take a specific example, the 

routine-denotation 
I 

r----------------------r--~---------------~------1 
I I 

open- formal-parameters-pack cast 
symbol I I 

I I I 
I r--------------~------------, I 
I I I I I 
I open- formal-parameter- close- I 
I symbol list symbol I 
I I I I I 
I I r-------rL--------, I I 
I I I I I I I 
I I formal- gamma formal- I I 
I I parameter I parameter I I 
I I I I I I I 

.J.. .J.. ----~----- .L. 
___ .J..__ 

.L. ----~----
D( !:~.! f~,g.! a !~g.! b 

Fig.5.4 

•formal-parameters-pack• 
o(,!nt n, [ 1:n]f~2.! u)o 

may be transformed into 

: 'i 

o!Q! n = 10, [ 1:n)f~~.! u = x1 ;c 
but the •formal-parameters-pack• 

o<!n! n ; [ 1:n)f~2.! u)c 
may be transformed into 

+ := b 

I 
close-
symbol 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

.L. 

) 0 

c,!Q! n = 1 0 ; ( 1: n ]fg,g.! u = x 1 ; o , 
which is more useful since its elaboration is well defined. The 
particular choice of the •gomma• which separates •form'il­
parameters• is therefore of significance but that which 
separates the •actual-parameters• of a •call• has no semanti= 
significance. 

The semantics of a •routine-denotation• [R.5.4.2] tells us 
how the routine which it possesses is obtained. The essential 
points are, that an •equals-symbol• followed by a •skip-symbol• 
is inserted after each •formal-parameter•, that the •open­
symbol• which begins the •formal-parameters-pack• is deleted and 
that its •close-symbol• is changed into a •go-on-symbol•. The 
more precise statement in the Report [R.5.4.2] should be 
studied. 

.A further example of a •routine-denotation• is 
o ( (!:~21 x) ~~,g.! : random * x) c 

where the second occurrence of D!:~2.!o (part of the •cast•) 



64 An ALGOL 68 Companion 

indicates that the routine is to deliver a value of mode •real•. 
The example in section 5.1 delivers no value and therefore uses 
a •void-cast• (whose •virtual-declarer• is empty). Note that 

n£~21 : random * lOOn 
is not a •routine-denotation• despite the fact that it may 
appear in the •declaration• 

D£f2f £~21 r100 = !!~! : random * 100c 
however, the coercion known as "proceduring" (R.8.2.3.1.a] 
enables the identifier nr100n to possess the routine 

• (£~~! : f!~!: random r * 100)• 
Actually, it is only necessary to write 

D£fQf !~21 r100 = random * 100o 
and then the routine possessed by or100n will be 

•(!~~1: random* 100) • 

5.5 What happened to the old call by name? 

In explaining the parameter mechanism of ALGOL 60, it is 
customdry to consider an examfle something like 

DE~Qf!Qgf~ upa{a, b) ; y~!]~ b; ~~~!a, b 
h!g!g i : = i + 1 ; a : = a + b !!!go 

and to explain that, in the scope of the fragments D£~~1 ~!!~1 
x1 [ 1:10]; !!!i!9~! i ; i := 1o, the procedure call oupa(x1[i], 
2)o will, to the astonish~ent of most, increment the value of 
ox1[2]o rather than that of ox1[ 1 ]n. This is a result of the 
semantic description of procedure calls in ALGOL 60 [N.4.7.3.2] 
involving what is usually referred to as the "copy rule". In 
ALGOL 68 a routine which achieves a similar effect, for simple 
•variables• (not •slices•) passed to nan, is 

n£rOf upa = (f~E £~21 a,!!~! b) (i +:= 1 ; a +:= b)o 
but the •call• oupa(x1(i], 2)cin the range of o(1:10]£!~! xl; 
i!!! i := 1o, will increment the value referred to hy ox1(1 ]o and 
not ox1f2 ]o. rhus the passing of the •parameter• ox1(i ]o by 
name, as it was known in ALGOL 60, is not achieved, in ALGOL 68, 
by using the •formal-parameter• nref f!~! ao. The resulting 
•identity-declaration• o~!! ~!~! a = x1(i ]o is elaborated at the 
time of entry to the routine and the old copy rule of ALGOL 60 
does not apply. 

In the case of expressicns and subscripted variables, this 
copy rule of ALGOL 60 amounted to the passing of a procedure 
body to the formal parameter and was used by a generation of 
instructors to impress students with the idea that ALGOL 60 is a 
nice lanquaqe in which nice things can be dcne in a nice way. 
However, the niceties of it were often too subtle for the 
beginner, who thus fell into the trap of using a powerful device 
when it was not necessary for him to do so. We may now perhaps 
look back upon it as a design imperfection in ALGOL 60. There 
should have been a <name part> rather than a <value part> 
f N.5.4.1 ]. A language should be such that the least effort by 
the programmer calls up the simplest implementation schemes. If 
he wishes to use a more powerful scheme, then he should be made 
aware of it by the necessity for writing a little more in his 
source program. 

To recapture the strange effect of the call by name of 

ALGOL 60, the example 
O£~Q£ upb = (Eroc re 

for then the tirst­
oupb(x1fi], 2)o is o 
elaboration of ox1[i]o 
[ R. 8 .2.2] of oac in 0 
transfer. Thus nx1(2]c 

The occurrence of 
anoth~r example of a 
•rout1ne-denotation• 
to possess the routi~e 
as proceduring f R.8.2. 

5.6 Program example 

. The following a 
d1rected graph ego <t> 
graph are represented 
r?w-of-bits ego. A set 
blts structure, the j­
which is •true. if tha 

The set of nodes 
The edges in a fami 
like ogo, is of mode • 
set obn of nodes ne 
contains only node •1• 
recursive routine ogro 
each node •i• in ob 
from oso to node •i•. 
removed from ego. The 
The procedure cgrowo 
of th~ saplings augmen 
by ne1ghbours of node 

Since the standan 
be larger than the 
mask out the redundant 

If the number of 
•mode-declaration• for 
accordingly. If suffif 
rna Y use the mode •row-e 
the operations involvec 

As an example, foJ 
th 1(2,3,4), 

e algorithm generate! 

1 () , 
1 () , 

2 ( 1) , 
2 ( 1) , 

3 ( 1,; 
3 ( 4) 1 

c 1 > T 1 rans ated from Al< 
Assoc. Computing Machir 



•rea 1•. 
e uses 

that 

t it rna Y 

2.J.1.a] 

60, it is 

~al ~H~1 
Gpa (x 1( i ], 

value of 
ult of the 
N.ll.7.3.2] 
rule". In 

or simple 

b)o 
].£~~1 X 1 ; 

, x1[1]o in:l 
, x1(i ]o by 

ALGOL 68, 
resulting 

ted at the 
ALGOL 60 

bles, this 
procedure 

neration of 
60 is a 

nice way. 
le for the 

rful device 
ow perhaps 
L 60. There 
alue part> 
t effort by 

If 

in 

1 by name of 

An ALGOL 68 Companion 65 

ALGOL 60, the example mentioned above should appear as 
D£!Q~ upb = (E!Q~ !~! £~~1 a, !~~1 b) (i +:= 1; a+:= b)o, 

for then the first •declaration• arising from the •call• 
cupb (x1fi ], 2) c is D££Q~ .£~! !~~1 a = x1[i ]c. In this case the 
elaboration of cx1[i]c occurs at the time of the deproceduring 
[ R.8. 2. 2] of can in ca +:= bo, and not at the time of parameter 
transfer. Thus ox1[2]c is incremented and not ox1[1]o. 

The occurrence of ox1[i]o in D£!Q~ tQ! tQ~! a= x1[i ]o is 
another example of a •procedured-coercend• for ox1[i]o is not a 
•routine-denotation•. Nevertheless, the •identifier• nan is made 
to possess the routine • (£~! !~~! : x1[i])• by a coercion known 
as procedurinq rR.8.2.3]. 

5.6 Program example 

The followin g algorithm finds all trees which span a non­
directed graph ago <1>. The edges radiating from node •i• in the 
graph are represented by bits in the i-th bits structure of the 
row - of-bits ogo. ~ set of nodes is also represented by bits of a 
bits structure, the j-th node being represented by the j-th bit, 
which is atruea if that node is present. 

The set of nodes in the growing trees (saplings) is oso. 
The edges in a family of saplings are recorded in nan, which, 
like ago, is of mode •row-of-bits•. The boundary of esc is the 
set nbc of nodes neiqhbouring the nodes cf oso. Initially esc 
contains only node •1• and abo its neighbours, i.e., og[1 ]o. The 
recursive routine ogrowc iterates over the nodes in obo. For 
each node aia in abo it finds all possible edges (new growth) 
from oso to node aia. This new growth is recorded in oao and 
removed from ego. The node •i• is removed from the boundary nbc. 
The procedure cgrowo is then called recursively with the nodes 
of the saplings augmented by node •i• and the boundary augmentei 
by neighbours of node aia. 

Since the standard ntits widthc (or olcng bits widthc) may 
be larger than the number of nodes, a omasko is necessary to 
mask out the redundant bits when testing bit patterns. 

If the number of nodes exceeds obits widtho, then the 
•mode-declaration• for c]o, in the first line, should be changei 
accordingly. If sufficient precision is then not availatle, one 
may use the mode •row-of-toolean•, with suitable declaration of 
the operations involved. 

As an example, for the graph 
1(2,3,4), 2(1,3), 3(1,2,4), 4(1,3) 

the algorithm generates eight trees in four families 

1 () , 
1 () , 

2 ( 1) , 
2 ( 1) , 

3(1,2), 
3 ( 4) , 

4 ( 1, 3) 
4 ( 1) 

(4 trees) 
(1 tree) 

<1> Translated from Algorithm 354 by M.Douglas Mcilroy. 
Assoc. Computing Machinery, Vol 12(1969) p. 511. 

Comm. 



66 

1 () , 
1 () , 

2 (3) , 
2 (3) , 

An ALGOL 68 Companion 

3 ( 1) , 
3 ( 4) , 

4 ( 1, 3) 
4 ( 1) 

(2 trees) 
(1 tree) 

ot~g!Q ~QQ~ ~ = Qi~§ ¢or 12B9 ti~§, if necessary¢ ; 
E!:.Qf trees = ([ 1:) t g ¢the given graph¢, 

E!:Qf ([ ]Q) f ¢the action for each family¢) 
t~g!g !Q~ n = ~EQ g ¢the number of nodes in the graph¢; 
r 1:n lt a ¢the growing family, saplin gs¢; 
b t; Q flips = t Q!: ~ t ¢all flips¢ ; 
t unit= -.(flip:; ~E - 1) ¢a flip followed by flops¢, 

mask = ~(flips !!E -n) ¢for masking redundant bits¢; 
E!:Qf grow = (!:~![ 1 :n 1~ g ¢the residual graph¢, 

b s ¢the nodes of the saplings¢, 
~~! Q b rtcoundary of the s aplings¢) 

!! s ~ mask 
~~~Q ¢the family is compl ete, so¢ f(a) 
~J:§g for i to n do

if i-elem-h --
then ¢examine each node of the boundary¢
~-~~iti = unit Y£(1-i) rtonly the i-th bit is flip¢;
b := t and -. uniti ¢remove node i from the boundary¢
afil :=-g(i] i!QQ s rtthis is the new growth¢;
q[i 1 : = q(i] i!.!!Q ~ s ¢remove the new growth¢;
qrow (JQ.f [1: n]Q := g ¢pass a copy of the residue¢,

s or uniti ¢th e family now includes node i¢,
12~-Q := b 2!: gfi] ¢the bounjary is au gmented by
the neighbours of ncde i¢)

(-. g[i] ~ mask 1 ¢we cannot move¢ out)
!.i ;

out : §..lsi.E
fi .

C n- ~ • 1 1 a[1 J : = --. flips) ;
grow(J:Qf [l:n]Q := q ¢s tart with a copy ¢ ,

unit ¢start with node 1¢,
12f ~ .- g(1] ¢the neighbours of node 1¢)

In the above, the procedure oqrowo has two •calls•. rhe
• call• pre ceding the final oendc, which starts the whol e
process, an d another recursive--•call• within the •routine­
denotation•. In both of these •calls•, notice that the first a nd
third •parameters• must be •variables•. Moreover, new copies of
these •variables• must be passed. A convenient way to do this is
to use •local-generators•. The second •farameter• is a
•constant•, a nd no assignment is made to it.

Review questions

5.1 The parameter mechanism

a) Is the following an •identity-declaration•?
D£~~1 E!:2f P = (E~i!l a) !:~~1 : a * ao

b) Is the following
D

c) Giv e a • declar:.ti
• pa ra meters• an
a nd •2•.

d) Gi ve a • declarati '
pa r ameters • whic

e) Give a •declarati,
•real-variable• ,

5.2 Routine deno

a) Is of~! !:£~1 xy =
b) Wha t is the • formi
c) If c po possesses

a * b) •, wha ·
cp(x+l, y)o?

d) What is the value
!:~~! : a * a) c?

e) What is the valut
!:~!f 1 : n 1!:~~1 a 1)

5.3 More on para1

In the reach of '
of op (x, y) c
a) in the reach cf o
b) in the reach of ·

DE!:Qf p = (real <

c) in the reach-of-
0.I?!:2f p = (I.~! !:l

d) in the reach of a
:= be?

e) in the reach of ~

5. 4 syntax of rot

a) Translate the foL
O££.Q.f~.9:!!fl

5.6 Program exam :

a) Is cunito a •consi
b) W by is a orefo no i
c) Why is an ;actual·

•call•?
d) W by was oto not i1
e) If on o is •3• a1

omasko?

¢;

) ¢;

"iryt

¢,

I

ed by

tlls•. rhe
the wh ol e
•routine­
first a nd
~opies of
:io this is
:lr• i s a

An ALGOL 68 Companion 67

b) Is the following an •identity-declaration•?
D£!Q~(I~~1 a)f~~1 p = a • ao?

c) Gi ve a •declar:t.tion• for a •procedure• or2c which has no
• para meters• and delivers a random real va lue between .o.
and • 2•.

d) Gi ve a •declar:t.tion• for a •procedure• omaxo with t wo • red l­
pa r ameters • which delivers the larger of thE two.

e) Give a •declaration• of a •procedure • orecipo which accept~ a
•real-variable• and replaces it by its reciprocal.

a)
b)
c)

d)

e)

of
a)
b)

c)

d)

5.2 Routine denotations

Is o_Ig! I£~1 xy = x * yn an •identity-declaration • ?
What is the ·•formal-parameter• of (1:3].!:.£~1 x1 :-= (1, 2 , 3) o?
If opo possesses the routine • (f~~l a = §tiE, !£~1 h = §tiD ;

a * h) ., what •c losed- cla use• is elaborated by the •ca 11
op(x+1, y)o?

What is the value possessed by the ejenotation• u((I£~1 a)
real :a* a)o?

What- is the value possessed by the •denotation• o(i~1 n, m ;
I~!J1:n]I_~~1 a1) I£3!1: (n < m I a1[n] I a1[ml)o?

5.3 More on parameters

In the reach of of~~1 x := 1.2, y .- 3.4o, what is the value
op(x, y)o
in the reach cf DJ?!Q~ p (.!:_£~1 a, h) 1. 1o?
in the reach of
DEfQ~ P = (I..£!!1 a, Igf !:..£~1 b) .I£3!1 (b +: = a ; b) o?

in the reach of
o.I?fQ~ P = (.!:.~! I£~1 a, b) E~.! !£~1 : > 2 I a I b) o?

in the reach of DJ?!Q~ p =(.!:.~!.I£.! f£~1 a, .!:.£.! !£~1 b)f~!!1 a
:= be?

e) in the reach of of!fQf p = (f].I£~1 a, b) .!:.~~1 : b[1] - a[1)o?

5.4 syntax of routin e dP.notations

a) Translate the following into ALGOL 68:
Of!!:_~f~Qg!:_g p(a, b) !~1~£ a ifl!~gg!:_ a, b

b : = b * 2 * ac.

5.6 Proqram example

a) Is ounito a •constant• or a •variable•?
b) Why is a oL£.!o not necessary in the •formal-rarameter• ot so? b
c) Why is an •actual-parameter• o1Q~ I := g[i)o used in the L1st _

•call•? /...
d) Why was oto not initialized?
e) If ono is •h and obits widtho is •fl•, what is the value of

omasko?

68 An ALGOL 68 Compa~ion

6 Coercion

6.1 Fundamentals

Coercion is a process whereby, from a value of one mode, is
derived the equivalent value of another mode, e.g., the real
value possessed by c2.0o is equivalent to [R.2.2.3.1.d] the
integral value FOssessed by c2o. Derivation of an equivalent
v:tlue is usually accomplished automatically, i.e., by no
conscious effort of the programmer. An example is

0£~!!1 x := 2c
where the value possessed by o2o is of mode •integral•, but the
value which is assigned must be of mode •real•. such coercions
are well known in other languages and are usually describe]
semantically. In PL/I there are extensive tables [P.Part II,
Section F] in which the programmer may find what action to
expect given the attributes of a source and those of its target.
Coercion in ALGOL 68 is described by means of the syntax, most
of which is in section 8.2 of the Report.

The particular coercions which are elabor:tted are generally
determined by three things, viz., 1) the a priori mode, 2) the a
posteriori mode and 3) the syntactic position, or "sort". A
•cast•, which was discussed in section ~. 13, is a useful object
in which to illustrate coercion, for that is usually its m:tin
purpose. We recall that a •cast• consists of a •declare r•
followed by a •cast-of-symbol• followed by a •unitary-clause•,
which is in a strong position. For example, in the •cast•

creal : 2o
the a priori mode of c2o is-;I~tegral•, the a poste riori mode of
its •unitary-clause• is that specified by its •declarer•, viz.,
•real•, and the "sort" of its •unitary-clause• is "strong". The
p:uticular coercion called into play i s "widening" from
•integral• to •real• and is governed by a syntactic rule
rH.8.2.5. 1.a], whose details we will not now unravel.

6.2 Classification of coercions

There are eight Cliffe rent
"dereferencing", as in

"neprocedurinq", as in
C£~!!1 : randomc

"procedurinq", as in
CQ!:.2f £~~1 : x1[i)c

"uniting", as in

"widening", as in

"row in q ", as in
"a"a

11 hippinq", as in
C£~!!1 : .§flED

and "voiding", as in the •void-cast-pack•
c (: p) 0

These coercions are classified into

coer-cions. They are

subsets as follows:

An

dereferencing and depro
these two together w
"adjusting"; and all ei
reader will find tha
metanotions [R.1.2. 3.k
~igure 6.2. Some of the
10 useful programs. The

strong •••••• ADAPT
f-
1

f. I
1rm •••••••• ADJUS

t-
1
I

weak •••••••• FITTE
~-

' I
soft ••••••• deproc

6. 3 Fitting

The result of dere
which it refers. This h

st

st

strongly-de

refer

reference- t

2 . 12 and elsewhere.
•strong-real-unit• A1
•identifier•, poss~sse~
to-real• and at 2, a~
envelops the mode •rea]

one mode, is
J., the real
~. 2.) • 1 • d] t he
1n equivalent
i.e., by no

ral•, but the
such coercions
illy describe1
es [P. Part II,

t action to
of its target.
e syntax, most

are generally
mode, 2) the a
or "sort". P.

useful object
lly its ffii in
f a •declarer•
itary-clause•,

. •cast•

.erioJ:"i mode of
!clai:"er•, viz.,
"stJ:"ong". The
idening" fJ:"om

syntactic rule
1el.

s. They are

as follows:

An ALGOL 68 Companion 69

dereferencing and deproceduring are together known as "fitting";
these two together with proceduring and uniting are known as
"adjusting"; and all eight are together known as "adapting". The
reader will find that this terminology is used in the
metanotions [R.1.2.3.k,l,m]. A diagrammatic scheme is shown in
figure 6.2. Some of the above examples would not normally appear
in useful programs. They are chosen for illustrative purposes.

COERCION TREE

strong •••••• ADAPTED
~---------T-------r------T--------,
I I I I I
1 widened rowed hipped voided

firm •••••••• ADJUSTED
r------------~--------------,
I I I
1 proced ured united

weak •••••••• FITTED
~-----------------------,
I I
1 dereferenced

soft ••••••• deprocedured

Fig.6.2

6. 3 Fitting

The result of dereferencing a name is to yield the value to
which it refers. This has been touched upon already in section

strong-real-unit ••••••••••••
I (2)

strong-real-base
I

strongly-dereferenced-to-real-base
I (3) :

reference-to-real-base
I

reference-to-real-mode-identifier
I

cxc
: { 1)
0 r-----,

o o->--1 \- •••••• :
0 L------J

Fig.6.3

2.12 and elsewhere. Figure 6.3 shows the parse of axe as a
•strong-real-unit•. At 1, in the figure, cxo, as an
•identifier•, possesses a name and envelops the mode •reference­
to-real• and at 2, as a •unit•, cxc possesses a real value ani
envelops the mode •real•. The coercion is shown at 3.

70 An ALGOL 68 Companion

The result of deproceduring is the elaboration of a routine
(without parameter~, e.g., the •cast• D£~~! randomo forces
the elaboration of the routine possessed by orandomc and
delivers the next random real value as the value of the •cast•.
Both dereferencing and deproceduring are classified together as
"fitting" [R.1.2.3.m], and are the two coercions which occur
most frequently.

6.4 Adjusting

Both proceduring and uniting, together with fitting
(dereferencing and deproceduring) are known as "adjusting" and
are so grouped because they can all occur in certain syntacti~
positions.

The result of proceduring is a routine. For example, the
value possessed by the •cast• DE!:Q£ £~~1 : x1[i]c is the routine
• (I~~! x1[i])•. It may be recalled, from section 5.2, that a
routine is syntactically similar to a •closed-clause• and that,
in the case where there are no •parameters•, there are no
•routine-denotations•. The proceduring coercion makes them
unnecessary.

Uniting has only a syntactic effect. In the terms of the
Report, the elaboration of a united •coercend• is the same as
that of its pre-elaboration [R.1.1.6.i]. This means that no
change of value is involved. Actually, an implementation will
find it necessary, upon uniting, to attach to the value some
record of its mode, so that this may be tested later, especially
if a •conformity-relation• is involved, but the particular
details of the implementation mechanism is not of concern to the
programmer. He should, however, be aware that it probatly occurs
and thus not make use of united modes unnecessarily. The subject
of unions is an advanced topic which we shall postpone to
chapter 7. Uniting occurs, for example, in c~n!~nCin.t, Q~~!)
!£~~[].

6.5 Adapting

The coercions known as wideninq, rowing, hipping ~nd

voiding, together with adjusting are collectively known as
"adapting" and form the set of all possible coercions in the
language. These are so grouped because they can all occur in
certain syntactic positions.

The effect of widening is to deliver a value of one mode
which corresponds to a given value of another mode. One may
widen from •integral• to •real• [R.8.2.5.1.a] and from •real• to
complex [ibid. b). Consequently, each of the following possesses
the value •true•:

o (£~~! : 2) = 2. Oc
c(fQ.!£1 : 2) = 2.0 ! O.Oc

One may also widen from bits to •row of boolean• [ibid. c) and
from bytes to •row of character• [ibid. d]. If obits widthc is
•4•, then o ([]QQ~! : Ql o has a value which is that of o (!~!§~,
!£~~. ~~. !M~)c. Similarly, if obytes widtho is •4•, then

-~ c._w
~~ iiQ

I
0 (§!J:!gg : ctb "abc")
(assuming that the
~han one_ coercion may
1n requJ.res first
v~lue, a widening of
complex.

. The effect of rc
1s a row of zero
cf l.E~~.! :c and in c[·
row of zero elemei
one obtains a row of
c[, Jl!!.! : [l!!l!
result in a one by or
bY o[,)i nt · 2 -- • c, l
•cast• o[,Jbool :c w;
which has -no- colun
result is a •constan i
rowed the result
achieved syntactical :
for ro w i ng [R • 8 • 2 • f
effect of creating a
oxo and the •iden .
possesses the value ,
by cxo. Of course ,
cannot be rowed to
syntactically invalii

The coercion
02~.!£o, the •nihil• 1
~hJ.s coercion is som 1
J.t occurs, then nt
•skip• and the •jump
•nihil• may be cot
•reference-to•. The
(undefined) value of

: §~;!Ec is some rea
bY 0 !!!1o, is a uniqu1

that o(I~f I~~! : ni
° C.E~f g~.J : skiE) -::
O~serve that--~(ref
•J.dentity-relation;­
agree. Also, c(ref D
elaborated, since -
[_R.8.2.1.2 Step 2).
]ump except in a ca
value delivered is
performed [R.8. 2• 7•
gQ_.!;Q l)c does not d

There remains 0
of voiding is to d

c 1 > It wi 11 be in t
this point.

of a routine
andomc forces

crandomo and
f the •cast•.

together as
which occur

with fitting
adjusting" and
r:tain syntacti:::

exa111ple, the
is the routine

ion 5.2, that a
use• and that,

there are no
makes them

be terms of the
s the sa me as

, is means that no
mentation will

the value some
ater, especially

the particular
f concern to the
probatly occurs

ily. The subject
hall postpone to
!! tin!, Q221>

ng, hipping a nd
tively known as
coercions in the

n all occur in

value of one mode
mode. one rna Y

nd from •real• to
llowing possesses

ean• [ibid. c 1 and
obits widtho is

s that of c(!~1§~,
idtbc is •4•, then

An ALGOL 68 Companio n 71

c(§!!~!!g : f!~ "abc") "abc~"c possesses the value •true•
(assuming that the anull charactero [R.10.1.1] is"~"). More
than one coercion may be involved in one •cast•, e.g., cfQ~£1
in requires first a dereferencing of cio to yield an integral
value, a widening of the value to •real• and another widening to
complex.

The effect of rowing is to deliver a multir-le value which
is a row of zero or one elements. It occurs, for example, in
or l.E~~.! :c and in c[Hn! : 2c. The value in the first case is a
row of zero elements, each of mode •real•. In the second case
one obtains a row of one element of mode •integral•. Note that
c[, ll!!! [1!!!! 2n involves two consecutive rowings which
result in a one by one matrix. The same effect can be attained
by o[,]i!!! 2c, since rowing is recur s ive (R.8.2.6.1.a]. The
•cast• c[, 1~221 :c will deliver a boolean matrix with one r:ow
which has no columns. Note that when a constant is rowed, the
r:esult is a •constant• multiple value, but if a •variable• is
rowed the result is a multiple •variable•. This effect is
achieved syntactically by the metanotion •REFETY• in the rule
for rowing [R.8.2.6.1.a]. Thus, c_;:~f[]£~~1 : xc will have the
effect of creating a new multiple value whose only element is
oxo and the •identity-relation• o (£~f[]!:~~!-. x) [1] :=: xc
possesses the value .true• no matt e r what value is referred to
by oxa. Of course, it is arran ged [R.8.2.6.1.b) that an empty
cannot be r-owed to a •var-iable•, i.e., c(f~if]E~~1 :)c is
syntactically invalid.

The coercion known as hipping takes care of the •skip•,
D§!i£n, the •nihil• D!!i1c, and •jumps• like ogQ_.!;Q novosibirskc.
This coercion is somewhat different from the others in that, if
it occur:s, then no other coercions may take place. Both the
•skip• and the •jump• may be coerced to any mode, but the
•nihil• may be coerced only to a mode which begins with
•reference-to•. The elator:ation of a •skip• delivers some
(undefined) value of the r e quired mode, e.g., the value of D!~~!-.

§!!Eo is some real value. The value of a •nihil•, r-epr:esented
by og!1o, is a unique name which refers to no value. !his means
that c(E~f £~~1: gil:> :=: (!~! E~~1: !!!.!)cis •true•, although
c(f~l r:e~1 : ~!!E) :=: (E~f !:~~1 : §!iE)o is un li kely to beC 1>.

Observe that c (!;~l i!!! : !!i.!) :=: (E~f £~~1 : !!i.!> c is not an
•identity-relation• because the modes of its •tertiaries• do not
agree. Also, c(f~! !:~~1 !:~! f~f £~~1 !!l!> o cannot be
elaborated, since no dereferencing can be don e on a •nihil•
[R.8.2.1.2 Step 2). The elaboration of a ccerced •jump• is a
jump except in a case like c(£fQf ¢YQlQ¢ : 9Q_!Q l)c, where the
value delivered is a routine and the jump itself is not
performed (B.8.2.7.2.b]. Note however that c(f~l E!:Qf ¢yQi~¢
gQ_!Q l)a does not deliver: a routine.

There remains one other coercion, viz., voiding. The effect
of voiding is to discard whatever value is involved. Thus

<t> It will be interesting to try out some of the compilers on
this point.

72 An ALGOL 68 Companion

a(: 2)a will not deliver the value •2•. The •void-cast-pack•
a(: random)o delivers neither a routine nor a real value, but
causes orandomo to be elaborated (deprocedured) once, whereupon
the real value delivered is discarded (see •NCNPROC•
[R.8.2.8.1.b]). This may incleed be just what the programmer
desires. In the reach of o£rOf I~~! p := randomc, the ope in a(:
p) a is dereferenced, deprocedured and then voided. The
•declaration• c~fQf ¢1QiQ¢ g = (: p)o, however, delays these
coercions until cqc is elaborated. He who can correctly perform
the syntactic and semantic analysis of D£Eg£ I~~1 p := random ;
.EEQ£ ¢1QlQ¢ q = (: p) ; (: g) ; .§~.i£D, has no need of further
advice concerning co~rcion.

6.6 Syntactic position

The coercions which may occur depend Ufon the syntacti~
position of an object in the •program•. There are four sorts of
syntactic position, viz., strong, firm, we:~lt and soft. In wh:~t
has gone before, we have concentrated our attention on the
•cast• because its •unitary-clause• is strong and in this
position all coercions can occur; moreover, strong coercion is
the main purpose of the •cast•. In firm positions only those
coercions collectively known as adjusting are relevant. In weak
positions fitting is relevant. A soft position permits only
deproceduring (see figure 6.2).

some examples of strong positions are •actual-parameters•,
e.g., a2o in of~~! x = 2a, •sources•, e.g., c2c in ax:= 2o,
•conditions•, e.g., ax=yo inc(x=y 1 l)a and •subscripts•,
e.g., cia in ax1[i)c. In these positions the a posteriori mode
(i.e., the mode after coercion), is dictated by the context.
Examples of firm positions are •operands•, e.g., axe in D~E§ xo,
and •primaries• of •calls•, e.g., ncoso in acos(x)c. Examples of
weak positions are •primaries• of •slices•, e.g., ax1a in
ax1[i lc and •secondaries• of •selections•, e.g., ocellc in anext
of cello. Examples of soft positions are •destinations•, e.g.,
cia in DX := yo and •tertiaries• Of •identity-relations•, e.g.,
cxc in ax :=: xxc. Figure 6.6.a shows an •assignation• in which
m:~ny of these positions occur.

one

D (X . -. re Q.!; z XX X 1(i)
T T T- T- T
s w s w s

__ T ___ --r--
0 0

------r------
5

---------------~-------------
0

{S = strong, F = firm,

Fig.6.6.a

:= sin (x + (real
-r- r

F F

pi)) 0

r-
s

-----r-----
F

-------T------
5

----------~-----------
5

w = weak, 0 = soft}

It is clear that •operands• cannot be strong, for otherwise
could not determine which operation is to be performed in

c1 + 2c. Since
of real valu1
uncertainty,
restricted to
making •opera!
permitted f1
deproceduring,
•skip• can 01

positions, we 1
•formula• •

We may 1

then the resull
•selection• c1
•variable•. Th:
deproced uri nq
dereferenci ng,
final •refereJ
may wish to wr:
that the mode ,
Sue h a posi ti OJ

coercions knot
dereferenci nq.

Fin ally, :
axe in ex :=
position is kn•

Note that
strongly coer•
from outside a 1

In the ab•
arising from 1
is generally m•
is what he use:
syntactic pos:
particular, th •
6.6.b, contai ·
are in a stron,
an •identity-d•
is •integral;

cfor i
r

integr,
mode·

identif

no assignment

lid-cast-pack.•
l value, but
1ce, whereupon
>.e •NCNPROC•
the programmer
the ope in o (:
voided. The

, delays these
ectly perform

p := random ;
d of further

the syntacti:::
four sorts of
soft. In what

,n tion on the
1 and in this
1 coercion is
LOns only those
!Vant. In weak.
>n permits only

tl-parameters•,
2o in ox:= La,

•subscri pts•,
posteriori mode

the context.
cxo in cabs xo,
)c. Examples of
e.g., cx1o in

ocellc in onext
ations•, e. g.,
lations•, e.g.,
tio n • i n w h i c h

pi)) D

.-
5

·----T-----
F

·--T-----
5

. .J.---------
5
= soft}

~. for otherwise
be performed in

An ALGOL 68 Companion 73

c1 + 2c. Since both •operands• could be widened, is it addition
of real values or addition of integral values? Because of this
uncertainty, the coercions involved in •operands• must be
restricted to those classed as adjusting. This is achieved by
making •operands• firm [R.8.4.1.d,f]. The only coercions
permitted for •operands• are therefore dereferencing,
deproceduring, proceduring and uniting. In particular, since a
•skip• can only be hipped and hipping can only occur in strong
positions, we conclude that the object c2~iE + E~~~n is not a
•formula•.

We may recall that if a •variable•, say cx1c, is sliced,
then the result, say cx1[i]c, is a •variable•. Similarly the
•selection• cnext of cello from the •variable• ccellc is also a
•variable•. This means that we need a position in which both
deproceduring and dereferencing are permitted, but that
dereferencing, in this position, must stop short of removing a
final •reference-to• from the a priori mode. Remember that we
may wish to write cx1[i] := 3.14c or cnext of cell := cell1c and
that the mode of a •destination• must begin-with •reference-to•.
Such a position is known as weak. It involves only those
coercions known as fitting, with the special proviso concerning
dereferenci nq.

Finally, in the •destination• of an •assignation•, e.g.,
cxc in ex := yo, only deproceduring can be permitted and such a
position is known as soft.

Note that the word "strong" is used in the sense of
strongly coerced, so that a strong position indicates strength
from outside and not strength from inside.

In the above we have considered the syntactic positions
arising from the strict language only. The programmer, however,
is generally more concerned with the extended language, for that
is what he uses. It is therefore appropriate to examine the
syntactic positions for constructs in the extended language. In
particular, the repetitive statement [R.9.2], shown in figure
6.6.b, contains the objects ca, b, c, de and ceo, all of which
are in a strong position. Note that cia is the •identifier• of
an •identity-declaration• and is therefore not coerced. Its mode
is •integral• (not •reference-to- integral•) and therefore

strong-unitary-void-clause
I . ______________________ .J._ ____________________ _

afar i !I2~ a ~X b to c ~hile d ~2 eo
T

integral­
mode­

identifier

T T T
strong-unitary­
integral-clause

Fig.6. 6. b

T
strong­
seria !­
boolean­
clause

T

strong­
unitary­
void­
clause

no assignment may be made to it. Moreover, the value of this oic

74 An ALGOL 68 Companion

is unavailable outside of the •clauses• cdc and ceo, no matter
how the elaboration of the repetitive statement is complet e d.
Also observe that the repetitive statement itself is strongly
voided and therefore cannot deliver a value. This is traditional
for several programming languages, so will be understood easily.

6.7 Coercends

Coercions are introduced at certain syntactic positions but
are not carried out except upon •coercends•. For example, i n
D£!2£ Egf E~g! p = (i < 9 I x1[i] I yl[i])c, the •condition~l ­
clause• c (i < 9 1 xl[i) 1 y1[i]) a is strong and the mode
reguired is that specified by D£E2f E~! !~~!c. However, ~
•conditional-clause• is not a •coercend• itself. In fact, if -the

-...., value of cic is •2•, then the routine possessed by cpc is I 11 (\~!
- !:~~! : xl[iJ>, •~ It is therefore the •base• cxl[i]c wh'i-eil is

coerced and no~he •conditional-clause• becaus e a •base• is a
•coercend•.

•Coercends• are easily distinguished and we have ~et them
all before, although we have not, as yet, cl~ssified them as
such. A •coercend• is either a •base•, e.g., cx1[i]c, a
•cohesion•, e.g., cnext 2! cello, a •for mula•, e.g., DgQ2 xc o r
a •confrontation•, e.g., ox .- yo [R.8.2.0.1.a, 1.2.4. a] . A
certain set of coercions may be implied by the syntactic
position (sort) of the object, but none of these coercions wi l l
be elaborated on that object unless it is a •coercend•. The sort
is therefore passed to the •coercends• within the object. Whe n a
•coercend• is met, then all coercions implied by that syntactic
position must be completely expended.

6.8 A significant example

Perhaps we should now look closely into the reason why
D£f2f t~oigt p = randomo

is not an •identity-declaration•. The i ntention was, perha ps,
D££2£ ¢!2!Q¢ p = (: random)c or D£!2f reg! p = randomc. First we
must observe that no extension could have been applied si nce
crandomc is not a •routine-denotation• [R.9.2.d], so this mus t
be parsed as an •identity-declaration• in the strict langua ge .
An attempt to parse DEfOC tvo!g¢ p = randomo must begin with the
facts that ope is a •procedure-void-mode-identifier• ~n1

•random• is a •procedure-real-mode-identifier•. Since crandomo
is a •base•, we ~ust therefore attempt to find production ru l es
in the hope of showing that a •procedure-real-base• is a
production of •strong-procedure-void-base•. The production rule
for any given notion can be obtained from only one rule of t he
Report. If we take that rule [R.8.2.0.1.d] and replace t he
metanotion •COERCEND• appropriately, we have

•strong procedure void base : procedure void base ;
strongly ADAPTED to procedure void base.•

Since crandomo is not a •procedure-void-base•, ve must new see
whether it can be produced from the seccnd alternative. This
means replacing •ADAPTED• by each one of its eight terminal
productions, i.e., by •dereferenced, deprocedured, procedured,
united, widened, rowed, hipped• and •voided•. ie look at each of

these in turn. In
have

•strongly derefe
strongly FH

Thus the mode
•procedure-void• t
apply to deprocedu
feed in to each
sense used above)
through this route

The rules for
•strongly proced

void base ·
strongly d~r
strongly pro
strongly uni
strongly wid '
strongly row '

Each of these must
is not a •void b ;
the others the 1

• proced ured-to-voic
•rowe:l-to-void• le;
[R.8.2.1.1, 8.2.3. ·

By examining
f R.8.2. 5.1], rowin •
see that productioi
base• through any
rules for hi ppinq [
only to •skips•, .,
these. This compJ
randomo is not an •

Note that for
prod uc tio n is

•strongly procedu
void base. •

[R • 8 • 2 • 3 • 1 • a] • A1 sc
coercion is reguj
•procedure-real•.

6. 9 The syntactic m

The coercions
modes, all contai
the Report. A tho
requires a knowle
their use. The rea
a~alysis (parsing)
g1ve below a comple
in the •cast• cr
•declaration• cin~
•reference-to-in~eg
•reference-to-integ

, , no matter
is completed.
is stron g! Y
traditional

stood easily.

positions bu t
r example, in
.•condi tiona l­

and the mode
la. However, <l

fact, if ~ t he

ape is (• CI~!
1[i]a whW 1 5

•base• is a

e have met them
ified the m as
• , ax1[i Jc, a
q., a~!!2 xa or
• a, 1. 2. 4 • a] • P.

the syntactic
coercions will

rcend•. The sort
object. When a

that syntactic

reason wh 'J

ion was, perhaps,
randoma. First we
n applied s ince
.d), so th i s must
strict language.
st begin with t he
identifier • a n:l

Since ara nd om c
production r ules

real-base• is a
e production ru le
one rule of the

d) and replace the .

base ;
•

new see
alternative. This

s eight termi na l
ured, procedured,

we look at each of

An ALGOL 68 Companion 75

these in turn. In the rules for dereferencing [R.B.2.1.1.a], we
have

•strongly dereferenced to procedure void base :
strongly FITTED to reference to procedure void base•

Thus the mode enveloped has become longer, i.e., from
•procedure-void• to •reference-to-procedure-void•. The same will
apply to deproceduring [R.B.2.2.1.a]. Because these two rules
feed into each other, we can only lengthen the mode (in the
sense used above) by using them. Thus we cannot reach our goal
through this route.

The rules for proceduring [R.B.2.3. 1.a J yield
•strongly procedur~d to procedure void base

void base ;
strongly dereferenced to void base
strongly procedured to void base
strongly united to void base ;
strongly widened to void base
strongly rowed to void base.•

Each of these must now be examined. In the first place , crandomc
is not a •void base•, so we dismiss the first alternative. For
the others the words (protonotions) •dereferenced- to- void•,
•procedured-to-void•, •united-to-void•, •widened-to-void• and
•rowe:l-to-void• lead us nowhere in the appropriate sections
[R. 8. 2. 1 • 1 I 8 • 2. 3. 1 I 8. 2. 4 • 1 I 8 • 2. 5. 1 I 8. 2 • 6 • 1] •

By examining the left hand sides of the rules for widening
(R.B.2.5.1], rowing [R.B.2.6.1.] and voiding [R.8.2.8.1], we can
see that productions for •strongly ADAPTED to procedure voi:l
base• through any of these routes cannot be found. Finally, the
rules for hipping (R. B. 2. 7. 1] cannot be used since they apply
only to •skips•, •nihils• and •jumps• and crandomo is not one of
these. This completes our deduction that D££Q£ t12!gt p =
randomc is not an •identity-relation•.

Note that for D£IQ~ ¢!oig¢ p = (: random)c, the significant
prod uc tio n Js

•strongly procedured to procedure void base :
void base. •

[R.8.2.3.1.a]. Also, for D££2£ f~gl p = randomc only the empty
coercion is required for crandomo is already of a priori mode
•procedure-real•.

6.9 The syntactic machine

The coercions are, with the exception of balancing of
modes, all contained in the syntactic rules in section 8.2 of
the Report. A thorough understanding of coercion therefore
requires a knowledge of these rules and a certain dexterity in
their use. The reader is encouraged to try some syntactic
analysis (parsing) for himself, but to help him on the road we
give below a complete analysis, as a •strong-real-unit•, of oic
in the •cast• creal ic, where cia is in the reach of the
•declaration• cini--Ic. The •identifier• cio is thus a
•reference-to-iniegral-mode-identifier• and its a priori mode is
•reference-to-integral•. The cr~glc in the •cast• indicates that

An ALGOL 68 Companion

the a poste~io~i mode is ·~eal•. The ~efe~ences within b~aces
a~e to the pa~ticula~ rules of the Report which are used.

•stronq real unit• ••• 1
•strong unitary real clause•{6.1. 1.e l 2
•stronq ~eal tertiary• (8.1.1.al ••••••••••••••••••••••••••• 3
•st~ong ~eal secondary• { 8. 1.1.b} •••••••••••••••••••••••••• 4
•st~ong ~eal primary• (8. 1.1.c} •••••••••••••••••••••••••••• 5
•st~ong real base• { 8. 1. 1.d} ••••••••••••••••••••••••••••••• 6
•st~ongly widened to real base• (8.2.0.d} ***************** 7
•st~ongly de~efe~enced to integral base• {8.2.5.1.a} ****** 8
·~eference to integral tase• {8.2.1.1.a} ••••••••••••••••••• 9
•refe~ence to integral mode identifier• {8.6.0.1.a} •••••••• 10
•1 e t te r i • { 4 • 1 • 1 • b } ••••••••••••••••••••••••••••••••••••••• 11
•letter i symbol• {3.0.2.b} •••••••••••••••••••••••••••••••• 12

In the above analysis the two coercions occu~ in lines 7
and 8. In lines 1 to 6, the sort, i.e., •st rong•, is carrie:i
through the parse until it meets with the •coercend• (in this
example a •base•) in line 6. In lines 9 to 12 all the coercions
implied by the •st~ong• in line 1 have been expended. The
elabo~ation natu~ally follows the parse in the reverse orde~. At
line 10 the •identifier• cic is identified with its defining
occurrence and the a priori mode, •reference-to-integral•, is
established. (This is usually accomplished by an ea~ly pass of
the compile~.) In line 8 the derefe~encing occurs and this is
followed by widening in line 7. No fu~the~ semantics is involved
in lines 6 down to 1.

6.10 Balancing

Balancinq is the wo~d used
finding one mode (the balanced mode)
qiven set of modes may be coerced
the balanced mode will be dete~mined
position involved. Balancing in a
process (some may even claim that it
whereas the programmer may need
balancing of modes in firm positions,
mode may not be immediately clea~.

to describe the process of
to which each one of a
<t>. The process of finding
by the sort of syntactic
strong position is a simple
is not really balancing),
to exercise ca~e in the

for the final balanced

i:3
In t"{u reach of the •declaration• cbool

¥~~1 xx, (re!!.l x1, f~H)!:~~.1 xx1c, an example
l.S

c(p I xx I x) := 3.14c
an example of weak balancing is

c (p I xx 1 I X 1) [i]c
an example of firm balancing is

c2. 3 + (p 1 3.14 1 x) c
and an example of strong balancing is

cy :=if p !h~~ 3.14 ~.1§~ x f!c

p, £~~.1 x, y, f~f
of soft balancing

<t> Strictly speaking, only •coercends• are coerced. we shall
find it convenient to speak of coercion of modes, by which is
meant the mode enveloped by a •coe~cend•.

In general,
found which is
coerced to it. In
modes must be
others may be str
syntactic positio
modes, othe~wise
which a balance i
k) c , w hi ch is t h.

6.11 Soft balanciJ

A simple exa r

Examination of 1

the mode of the • i
• reference-to-rea!
balanced mode of
real•. However, 1
real•, whe~eas the
cxxc may be coerc£
and that of cxr
only coe~cion wl
deproceduring, tl
coerced to the baJ
softly coerced a
(derefe~enced). A

soft-cc

r-------T---
1 I

if-symbol condit
I I
I I
I I
I I
I I
I I
I I
I I

.J.. .J..

c(p

is shown in figure
parse is

• FEAT choice CLA
fR.6.4.1.d], in w
by •reference-to-r
production. The co

•FEAT choice CLA
FEAT then CLAO

a braces

• • • • • • 1
• • • • • • 2
• • • • • • 3
• • • • • • 4
• • • • • • 5
• • • • • • 6
••••• 7
••••• 8
• • • • • • 9
•••••• 1 0
•••••• 11
•••••• 12

lines 7
:; carrie3.
(in this
:oercions
de d. T be
order. At

defining
cal•, is

pass of
this is
involved

ocess of
ne of a

finding
syntactic

a simple
l a ncing),

in the
balanced

x, y, f~!
balancing

We shall
which is

An ALGOL 68 Companion 77

In general, given a set of modes, a balanced mode must be
found which is such that each one of the given modes may be
coerced to it. In achieving this, at least one of the given
modes must be coerceable using the given sort, whereas the
others may be strongly coerced, i.e., the limitations of the
syntactic position must be accepted by at least one of the given
modes, otherwise the balancing is not possible. An example in
which a balance is not possible is o2. 3 + (p 1 .§!!~ 1 gQ_!Q
k)o, which is therefore not a •formula•.

6.11 Soft balancing

A simple exa~ple of soft balancing is
o(p I xx I x) := 3.Hc

Examination of this object suggests an •assignation• in which
the mode of the •destination•, c (p 1 xx 1 x) c, should be
•reference-to-real•. A successful parse is thus assured if the
balanced mode of the •conditional-clause• is •reference-to­
real•. However, the mode of cxxo is •reference-to-reference-to­
real•, whereas that of cxc is •reference-to-real•. The mode of
cxxo may be coerced to the balanced mode by dereferencing (once)
and that of oxo by the empty coercion. If we recall that the
only coercion which is relevant in soft positions is
deproceduring, then it is clear that cxxo cannot be softly
coerced to the balanced mode. One must therefore allow oxc to be
softly coerced and oxxo may then be strongly coerced
(dereferenced). A sketch of the parse of the •destination•

reference-to-real-destination
I

soft-conditional-reference-to-real-clause
I

r-------T--------------~-~---------------------,
I I I I

if-symbol condition soft-choice- fi-symbol
1 1 reference-to-real-clause 1
I I I I
I I r-------~--------1 I
I I I I I
1 1 strong-then- soft-else- 1
1 1 reference-to- reference-to- 1
1 1 real-clause real-clause 1
I I I I I

____ _L_ __

-----~- .L

[J (p XX X) 0

Fig.6.11

is shown in figure 6.11. The rule which is relevant in this
parse is

•FEAT choice CLAUSE : strong then CLAUSE, FEAT else CLAUSE.•
rR.6.4.1.d], in which •FEAr• is replaced by •soft• and •CLAUSE•
by •reference-to-real-claus e•. This same rule has an alternate
production. The complete rule is

•FEAT choice CLAUSE: strong then CLAUSE, FEAT else CLAUSE
FEAT then CLAUSE, strong else CLAUSE.•

78 An ALGOL 68 Companion

The second alternate is clearly necessary for parsing the
•assignation•

..__ c(p I x I := 3. no
for in this case cxxc must be coerced.

Now consider the •assignation•
c(p I x I y) .- 3.14c

Here either oxo or eye may be chosen to be soft. It follo~s that
o (p I x 1 y) c may be parsed as a •reference-to-real-
destination• in two distinct ways, i.e., either the axe or the
eye may be chosen as soft ~ith the other strong. This is one of
the rare examples of syntactic ambiguity in ALGOL 68. The
ambiguity might hav'e been avoided, but at the cost of
considerable complexity in the grammar. Since no semantic
ambiguity is involved, greater clarity in the grammar is
achieved by allowing a harmless syntactic ambiguity.

6.12 Weak balancing

A simple example of ~eak balancing is
ere of (p 1 1 i 2 1 3) o

Here the •clause• o(p 1 1! 2 T 3)n is the •secondary• of a
•selection• and is therefore in a weak position [R.8.5.2.1.a].
The mode of o1 ! 2e is •complex•< 1 >, but that of c3o is
•integral•. It is clear that the object o3o must be widene:i
(twice) to •complex•, but widening cannot occur in a weak
position. Thus e1 i 2e must be weakly coerced (the coercion is
empty) and e3e may then be strongly coerced (widened twice). The
balanced mode of e (p 1 1 i 2 1 3) c is therefore •complex•. A
sketch of the parse of this •secondary• is shown in figure 6.12.

weak-complex-secondary
I

weak-conditional-complex-clause
I

.. ----------r-------------~-----r-------------------,
I I I I

if-symbol condition weak-choice- fi-symbol
1 1 complex-clause 1
I I I I
I I .---------1---------, I
I I I I I
I 1 weak-then- strong-else- 1
I 1 complex-clause complex-clause 1
I I I I I
.L .L ------L-----

_____ _J. __ _

.J..

0 (p 1 ! 2 3) 0

Fig.6.12

The rule used in this parse is the same as that given in
paragraph 6.11 above, but this time •FEAr• is replace~ by •weak•

Cl> Here •complex• stands for •structured-with-real-field­
letter-r-letter-e-and-real-field-letter-i-letter-m•.

and •CLAUSE• by ,

A weak ba :
ambiguity is

in the reach o
the balanced mod •
does not .remov ,
coercion of both
them may be chos ,

6.13 Firm balanc

A simple ex;

In this example
an •operand• of ;
(R.8.4.1.d]. T
• stand ard-prelud ,
of mode •real•
must be widened
position, we mu
strong. A sketch

r-------
1

if-symbol con
I
I
I
I
I
I
.L

c (

shown in figure
that qi ven in
•firm• and •CLAO

An example
syntactic ambigu

for dereferenci
and exa may be f

6. 14 Strong bala

A simple e:x

for parsing the

' .

t. It follows that
reference-to-real­
her the axe or the
g. This is one of

in ALGOL 68. The
t the cost of
ince no semantic

the grammar is
guity.

•secondary• of a
n [R.8.5.2.1.a].
that of c3c is
o must be widenei

occur in a weak
(the coercion is

dened twice). The
ore •complex•. A

n in figure 6 • 1 2.

I
fi-symbol

I
I
I
I
I
I
I

.L

3) c

me as that given in
replace~ by •weak•

ed -with-real- field­
te r-m•.

An ALGOL 68 Companion 79

and •CLAUSE• by •complex-clause•.

A weak balance which involves a
ambiguity is

harmless syntact i::

ere .Qf (f 1 z 1 1 z2) c
in the reach of the •declaration• C£Q~21 z1, z2n. In this case
the balanced mode is •reference-to-complex• since weak coercion
does not .remove the last •reference-to• [R.8.2.1.1.b]. The
coercion of both ozlc and oz2o is thus empty and either one of
them may be chosen as weak.

6.13 Firm balancing

A simple example of firm balancing is
o2. 3 + (p I 4. 5 1 6 l c

In this example the •conditional-clause•, o(p 1 4.5 I 6)o, is
an •operand• of a •formula• and is therefore in a firm position
[R.8.4.1.d]. The •operator• o+o is that declared in the
•standard-prelude• [R.10.2.4.i]. It requires a right •oper<1nd•
of mode •real•. Thus o4.5o is of the required mode while o6o
must be widened. Since wi deninq may not occur in a firm
position, we must choose of.J.5o a s firm and then allow o6o to be
strong. A sketch of the parse of this •operand• (•secondar y•) is

firm-real-secondary
I

firm-con ditional-real-clause
I

r----------~-----------~-----T-------------------,
I I I I

if-symbol condition firm-choice-real-clause fi-symbol
I I I I
I I r--------L------, I
I I I I I
1 1 firm-then- strong-else- 1
1 1 real-clause real-cliluse 1
I I I I I __ ---.J. ___ _ -----.L----

c (p 4.5 6) D

Fig. 6. 1 3

shown in figure 6.13. The relevant rule is again th e same as
that qiven in paragraph 6.11 above, l:ut •FEAT• is replaced by
•firm• and •CLAUSE• by •real-clause•.

An example of a firm balance in which there is a harmless
syntactic ambiguity is

o2. 3 + (p 1 xx 1 x) o
for dereferencing is permitted in a firm position and both cxxo
and axe may be firmly coerced to •real• by dereferencing.

6.14 Strong balancing

A simple example of a stronq balance is
oy := (p I x I 1)o

80 An ALGOL 68 Companion

Here the •conditional-clause•, o(p 1 x 1 1) o, is a •source•
and is therefore in a strong position [R.8.3.1.1.c). Both oxo
and ole must therefore be strongly coerced to the balanced mode
which is •real•. This means that oxo is dereferenced and ole is
widened.

Jbserve that strong balancing is a trivial process for one
is not faced with the necessity of deciding which of the given
modes should retain the sort of the syntactic position. They all
retain strong. In the example above, as in most cases of strong
balancing, the balanced mode is determined by the context.
Balancing in firm, weak and soft positions, however, is
different. In these positions the balanced mode is not given by
the context but must be decided by examining the given modes
alone.

6.15 Positions of balancing

In the example above we have considered balancing only in a
•conditional-clause•. This is a typical situation and is
sufficient to illustrate the principles involved. However,
balancing may occur in other situations and we shall list e~=h
of them here.

•choice-clause• in a •conditional-clause• [R.6.4.1.c,d]
e.g., D!!Q§(p 1 1 1 -2.3) c.

•balance• in a •collateral-clause• [R.6.2.1.e)
e.g., O!!I!!H1, 2.3, x)o.

•sui te- of-clause- trains• in a • serial- clause• [R. 6. 1. 1. g]
e.g., o((p 1 1) ; 3.14 • 1 : l)o.

•identity-relation• [R.8.3.3. 1.a]
e.g., cxx :=: xc.

Although these are the only balancing positions in the
strict language, the programmer should be aware of th e ir
implications in the extended language. For examfle

o (p I i I : q I x I : r I 3. 1 4 I 5) + 2. 3 5o
requires a firmly balanced mode of •real• for the left •operand•
of the •operator• o+o. This is achieved by dereferencing and
then widening cio, by dereferencing oxo, by the empty coercion
upon c3.14o and by widening oSo. Since an •operand• must be
firm, either cxo or o3. 14o could be chosen to be firm, and the
others could then be strong. Note that since widening cannot be
done in a firm position, both oio and eSc must be strong.
Another example of firm balancing in the extended language is

o(i 1 1, 3.4, x, random, xx, §~~E 1 gg_tQ error) + 1c
in which either c3.14o or oxo or orandomo or oxxo may be firm
but the others including the •jump• must be strong.

Notice that
strongly balanced
o[1:3]£~~1 x1o are

a •collateral-clause• may be only firmly or
[R.6.2.1.c,d]. Examples, in the reach of

o_!!I?~ (x, i, 1) o
for firm balancing and

cx1 := (x, i, 1)o
for strong balancing.

Balancing
•completer•. A

Here, if ope is
addition is per
is •integral-)
• ope rand • must

The balanc
is

Here the left •
cannot be soft.
soft and the
relation•

the c boice must
rela tion•

is syntactical
•tertiary• may
above, no sen
relation• whicl

I

in which the or
left •tertiary;

6. 16 Program eJ

The fall<
divisor of a
FORTRAN. The AI
used in the FC
to help in the
that all the
for cgQ_.!Q 11 01
could perhaps
•procedure• at

Dl?.!;Q£ gcdn =

¢the gcd rest
Qgll!! !.!!.! I

1!!..! m : = 0
¢find the :
for i to n
¢'t"he first

~! (m +: :
then tal
ei:SI u:
th~.!i ton
el§~ 14:

< 1 > Translated
of the Associa

is a •s ou rce•
.1.c]. Both oxc
balanced mode

tced and ole is

:ocess for one
h of the given
tion. They all
ses of strong
Y the context.

however, is
s not given by

given modes

:ing only in a
ttion and is
red. However,
1all list e~::h

4.1.c,d]

R.6.1.1.g]

ions in
:e of

)0

the
th e ir

.ft •operand•
renci ng and
pty coercion
d• must be
irm, and the
g cannot be
t be strong.
guage is
) + 1 []

ay be firm

Ly firmly or
r-each of

An ALGOL 68 Companion 81

Balancing may occur in a •serial-clause• which contains a
•completer•. A trivial example is

c ((p 1 l) ; 3. 14 • 1 : 1) + 2c
Here, if cpc is •true•, the c1c is widened to •real• before the
addition is performed (despite the fact that the right •operand•
is •integral•), for the firmly balanced mode of the left
•operand• must be decided without reference to the context.

The balancing of an •identity-relation• is soft. An example
is

DXX :=: XC

Here the left •tertiary• must be dereferenced once and therefore
cannot be soft. The right •ter-tiary• is therefore chosen to be
soft and the coercion upon it is empty. In the •identity­
relation•

DX : =: XXD

the choice must be made in the opposite order •
relation •

ex :=: yo

The •identity-

is syntactically ambiguous since either the left or the right
•tertiary• may be soft; however, as in the other case mentioned
above, no semantic ambiquity exists. A tyFical •identity­
relation• which might arise in list processing is

c(!~! £~11 : next 2! cell) :=: ~!1c
in which the cn!1c can only be strongly coerced. This forces the
left •tertiary• to be soft.

6.16 Program example

The following program calculates the greatest common
divisor of a set of integersCt>. The original algorithm is in
FORTRAN. The ALGOL 68 version given here retains the labels as
used in the FORTRAN program (preceded by the letter l) in oruer
to help in the comparison of the two. It is interesting to note
that all the jumps of the original naturally disappear except
for cgQ_!Q 110c in the innermost •conditional-clause•. This
could perhaps be eliminated by using a •call• of a recursive
•procedure• at the •label• cl10:c.

DE!Q£ qcdn = (!~! [1:] !ni a ¢the given set of integers~ ;
!~![1 :~E~ a] in! z ¢the resulting multipliers¢)

¢the qed result¢ !~! :
Q~g!~ ini n = YE~ a ¢the number of integers¢ ;
in t m : = 0 , k, sgn ;
¢find the first non-zero integer¢
fori ton while a[i] = 0 do (11: z[i] := 0, m := i)
¢the first non=zero integer~ if any, is in position m+1¢

if (m +:= 1) > n ¢now it is in position m~
!lign ¢all are zero, so exit with resultt 0
elsf 13: m = n
th~n ¢only the last one is non-zero¢ z[m] := a[n)
g1§g 14: ¢check the sign of a[m]¢

<t> Translated from algorithm 386 by G.H~Bradley, Communications
of the Association for Computing Machinery, Vol 13, No 7, 1970.

82 An ALGOL 68 Companion

Egf !nt am= a[m] ; sgn := ~jg~ am ;
!~! c1 : = am := a .bs am ; k := m + 1 ;
15: ¢calculate via-n-m iterations of the gcd algorithm¢
for i from m+1 to n while c 1 I 1 do
--~~gin-£~! i~!-ai =-afi] ; --

Jont q, y1 := 1, y2 := 0, c2 .- ~£~ ai k .- i
17: if ai = 0
!h~!!-ai := 1 z[i] .- 0
else 11:>: ---.u q • - c2 + c 1 (c 2 +: := c 1) I 0

Ih~.f y 2 - : = q * y 1 ; q : = C 1 + c 2 ; (c 1 +: : = c 2) I 0
!h~!! y1 -:= q * y2 ; 92_!2 110 ¢eliminate the jump?¢
else 115: (c1 .- c2, y1 := y2)
ti-:--- .

120: z[i) := (c1 - y1 * am) + ai
ai := y1 ; am := c1 !i ;

13 0 : ~~i.E ~~9. ;
¢ if k=n, then the following iteration is empty¢
125: 160: !2E j fro.!!J k+1 12 n 9.2 (165.: z[j] := 0)
140: f2~ i !E2~ k-m £1 -1 t2 2 12

(z(j] •:= a[j+1] ; 150: a[j] •:= a[j+ 1])
z [m] : = a [m + 1 1 * sg n ;
1100: am
fi

endD

Review questions

6.1 Fundamentals

a) What three things determine the particular coercions?
b) What are the four sorts of syntactic position?
c) Is or~~.! : i!!!o a •cast•?
d) Is oreal : boola a •cast•?
e) what -coercion-occurs in a[]Q22! lQ1o?

6.2 Classification of coercions

a) How many different coercions are there?
b) What coercions occur in Dreal : intD?
c) What coercions are classified as-fitting?
d) What coercion occurs in - c(]E~!!.! : 3. He?
e) What coercion occurs in Di!!I : g2_!Q. ko?

6.3 Fitting

a) What coercions occur in of~!!! : !~f ref ref realo?
b) In the reach of or~f I~f I~~! xxxo, ~hat-coercions occur

cref real : xxxo?
c) In--the--reach of cr~f E~f !!!! rpia, what coercions occur

oi~! : r pic?

in

in

d) In the reach o
c£Q.2.! : prbo?

e) What rules a
•real-cast•?

6.4 Adjusting

a) What coercions
b) Is uniting a f
c) What kind of v
d) Is oeEQf ¢YQiQ
e) Is DEIQf ¢Y2iQ

6. 5 Adapting

a) Is hipping an i

b) What coercion t

c) What coercions
d) what coercions
e) What coercions

6. 6 Syntactic

a) What coercions
b) of what sort i!
c) Of what sort i~
d) In the range ot

in a rr 1 x[2] • -
e) Of what sort i~

6.7 Coercends

a) What are the fa
b) List all the •

y + 3 fie.
c) Is ox :;;;;-nile a
d) IS DXX :=-nile
e) Is D!!i.! :=-,~a

6.9 The syntac

a) What rules are
b) Is OfQ..!!!E! : !!!!!
C) What rules are

1) 0?
d) what rules ar

void-unit•?
e) Is ox + ni!o a

6.10 Balancing

a) can the modes •
balanced to re,

b) Can the modes •
c) What is the

•reference-to-.

algorithm¢

.- i

1 +::= c2) f. 0
:l. te the jump?¢

Jty¢
:= 0)

:ions?

,c?
IDS occur in

:ions occur in

An ALGOL 68 Companion 83

0

pr t what coercions occur in x. / d) In the reach of e£IQ£ £gf ~22!
e~Q.Q! : prbe?

e) What rules are used in the parse of erg~! : randomc as a
•real-cast•?

6. 4 Adjusting

a) What coercions occur in ey.!!.!2.!! (fg~}, !!221} : randoma?
b) Is uniting a fitting coercion?
c) What kind of value results from a proceduring?
d) Is CE£2£ ¢Y2.!Qt sine a •cast•?
e) Is CE£Q£ ¢YQ!Q¢ : randoma a •cast•?

6.5 Adapting

a) Is hipping an adjusting coercion?
b) What coercion occurs in aQQQ! : 9.Q._!Q k a?
c) What coercions occur in ax := (1 > 2 I 3.4 I 5 } e?
d) What coercions occur in a[]E~~! : randomc?
e) What coercions occur in ay.!!!2.!! ((]£.~~}, Q2Q!} : randome?

6.6 Syntactic position

a) What coercions may occur in weak positions?
b) Of what sort is cie in ax1[i+1]e?
c) Of what sort is an1a in ax 1 [n 1 [i)]n?
d) In the range of e£gf E_gf []!:g!!! r r 1 xa, what coercions oc::;ur

in arr1x[2] :~ 2.3a?
e) Of what sort is ex a in ex : = yo?

6.7 Coercends

a) What are the four kinds of •coercend•?
b) List all the •coercends• in elf a Q.f b !hg.!! x := 2 g}§g x . -

Y + 3 f!_c.
c) Is ex := .!!!lc an •assignation•?
d) Is axx := nile an •assignation•?
e) Is cg!_} :=-loan •assignation•?

6.9 The syntactic machine

a) What rules are used in parsing a£Q.~E! : ie?
b) Is CfQ!E!: Y..!!iQ.!!(l.!!!, ~22!)a a •cast•?
c) What rules are used in the parse of aE£2£ tyg_!g¢ p = (: x :=

1) a?
d) What rules are used in the parse of arandoma as a •strong­

void- uni t•?
e) Is ax + ni!a a •formula•?

a}

b)
c)

6.10 Balancing

can the modes •real•, •integral• and •format• be strongly
balanced to real?

can the modes •real• and •integral• be strongly balanced?
What is the softly balanced mode from the two modes
•reference-to-real• and •rrocedure-real•?

84 An ALGOL 68 Companion

d) What is a firmly balanced mode from the
•integral•, •procedure-integral•

set of modes •real•,
and •reference-to-

in teqral•?
e) Can the modes •real• and •boolean• be balanced?

a)
b)

c)

6.11 Soft balancing ~~,~~~\b]
Is the parsing of c (p 1 xx 1 y ~:= • 14c :tmbiguous?
In the reach of cEfQf £~! f~~1 p v ow is c(p I px

:= 3.14c balanced?
In the reach of DEfQf £~! I~~1 p , how is c(p 1 px

k) := 2c balanced?

XX)

d) Can the pair of modes •procedure-row-of-r eal• and •reference­
to-real• be softly balanced?

e) Can the modes •reference-to-procedure-reference-to-bcolean•
and •reference-to-reference-to-boolean• be softly balanced?

a)

b)

c)
d)
e)

6.12 Weak balancing

In the reach
balanced?

Can the modes
integral- mode•

Is cl + re 2! (
Is ere 2! (p I
How is oim of (

of c(]£~~1 xlc, how is c (p I x 1 1 2) [i)c

•reference-to-real• and •union-of-real-and­
be weakly balanced?
p 1 1.2 1 3.4.! 5)c a •formula•?
1 i 2 1 3! 4)o syntactically ambiguous?
p random 1 0 1 2)c balanced?

6.13 Firm balancing

a) Is o§~iE 1 §~!pc a •formula•?
b) Can •union-of-reference-to-real-and-reference-to-integral-

mode• and •real• be firmly balanced?
c) Can • procedure-real• and •reference-to-real• be firmly

balanced to •procedure-real•?
d) Is o2 + (p 1 x 1 3.14) c syntactically ambiguous?
e) Is cab§ (p I ti.!:!~ I "a") c a •formula•?

6.15 Positions of balancing

a) Can the set of modes •reference-to-reference-to-procedure­
r?.ference-to-real•, •reference-to-procedure-reference-to­
real•, •reference-to-reference-to-real• and •reference-to­
real• be weakly balanced?

b) Is c (i 1 xx, !!!!:, §kip 1 92_.!2 error :=: xc an •identity­
relation•?

c) Is c ((p I l 1 l ; .!£.!!~ • l 1 : i > 0 I 12) ; f~.1~~ • 12 :
1)o a •closed-clause•?

d) How is D.!,!.EQ (1, 2.3, 4 i 5.6, x, xx, i)o balanced?
e) Is c(p 1 .!!.!.!: 1 §~!E) := 3.14c an •assignation•?

6.1b Program example

a) Describe the coercions involved in the elaboration of c(m +:=
1) > no.

b) Describe the elaboration of oint c1 := am := abs amo.
c) what is the purpose of the •declaration• or~!.!!!.! ai = a[i)o?

d) Why does a •
e) Can you eli1

procedure <

of modes •real•,
•ref ere nee-to-

ed?

mb ig uo us?
(p I px

c (p 1 px

XX)

• ann •refer ence-

~renee-to- bcolean•
softly bala need?

(P I x 1 I 2) [i]c

nion-of- rea 1-a nd-

ula•?
ly ambiguous?
ed?

enee-to-integral-

be firmly

iguous?

nee- to-pr oc edu re­
ure-reference-to­

and •reference-to-

xa an •identity-

; f21~~ • 12 :

boration of c (m t:=

ai = a[i]c?

d) Why does a •skip•
e) Can you eliminate

procedure at the

An ALGOL 68 Companion

10

occur on line ell-~£ ~~Qc?
the cgg_!2 ~ ~~~ usinq a

position cl10:c?

85

recursive

86 An ALGOL 68 Companion

7 United modes

7.1 United declarers

Although internal objects are always of one non-united mode,
external objects such as •expressions• [R.6.0.1,a,b] may be of
united mode, indicating that the mode of the v~lue possessed is
not known until elaboration (run time). ro allow for this, it is
necessary for the language to provide •declarers• which specify
united modes. Examples of such •declarers• are oyn!.2n<in1,
Q221> , Yn!.2n <(JE~~J:, r Jch~E> , Yni2n <E~.n 1!!!1. E~n JE~±> ,
~!!!Q!!(~,yni.QB(Q, ~), Q)o.

The syntax of •united declarers• is not trivial but we may
simplify it to the following:

united declarer : union of symbol,
open symbol, declarer list proper, close symbol.

declarer list proper declarer, comma symbol, declarer ;
declarer list proper, comma symbol, declarer.

The syntax of the Report [R.7.1.1.cc, ••• ,jj], however, is an
intricate exercise in the use of metanoticns. Its effect is to
allow, syntactically, that unions may be both commutative and
associative, and that the modes of the union may be treated in
the sense of mathematical set theory. This means that the same
united mode is specified by the •declarers• D.!!!!l~!!(~, Q, ~),

~!!!2!!(~, f, ~), Y!!!Q!!(~, .!!Bl.2B(Q, ~))o and cyn!Q!!(.!!!!!Q!!(f, ~),
Y!!!Q!!(~, ~))c.

7.2 Assignations with united destination

Because •declarers• specifying united modes exist, the
declaration of •variables• using such •declarers• is possible.
Such a •declaration• might be cyn12!! <in!, Q2.21l ibc, whereupon
the mode of cibo is •reference to union of integral and bcolean
mode•. An assignment may be made to such a •variable•,

reference-to-union-of-integral-and-boolean­
mode-assignation

I
r---------------~~--------------,

I I I
reference-to-union-of- becomes- strong-union-of-
integral-and-boolean- symbol integr~l-and-boolean-

destination 1 source
I I I (1)
1 I boolean-
! I base
.l,_

cib
(4)

:=
__ .l,_

(2)
o (3) r r------1 : • • • • • • r---,

o o-->--~1 !=======<========!
0 LL------.J

Fiq 7.2

but the •assign
only because
otruec, resulti
sub)ected (see
also valid. In
assigned does
possesses the s
a •base•, or, a
Note that oibo
• reference to u
name may refer
of mode •boolea
mode which beg
referred to by
general, only
at "compile tim
that the use
time organi zati
those required
4). A certain p
modes, but in s
moreover, ALGOL
• program• wher
necessary. Such
oib := !fg~c
•conformi ty-rel
further •assign

In the ran
be tempted to
the hope that t
However neithe
cases, though
• reference-to•,
In particular,
them out as not

7. 3 Conformity

•Conformit
rela tions• an
•conformi ty-rel
~!!Q b : : = i t 2
be written

conformity re
conformity re

conforms to
This syntax
symmetrical, bu
strict syntax
rna y see that th
the right is
Moreover, the m
•reference-to•.
•assignation•,
there is some s

1- united mode 1

11 b) may be of
possessed is

'r this 1 it is
which specify

ay.ni.9n(in.t.
£~f[Jrea,!),

but we may

1, declarer ;

ever, is an
effect is to

mutative and
be treated in
at the sdme
lQ!l (!!, Q, ~),
.YniQn !~, ~l ,

exist, the
is possible.
ba 1 whereupon

and bcolean
•variable•,

n-

1-of-
1-boolea n-

fJ
In-

I

!)

An ALGOL 68 Companion 87

but the •assignation• aib := truec is syntactically pcssihle
only because of the uniting--coercion to which the •base•,
c!!!!~a, resulting from its strong position as a •source•, is
subjected (see figure 7. 2 at 1). The •assignation• cib : = 1o is
also valid. In both these assignments the internal object
assigned does not change under coercion, and the object o~!~~o
possesses the same value whether it is considered, a priori, as
a •base•, or, a posteriori, as a •source• (see the figure at 2).
Note that cibc possesses a name (see figure at l), whose mode is
•reference to union of integral and boolean mode•, but that this
name may refer to a value which is either of mode •integral• or
of mode •boolean•, since values are not of united mode (i.e., a
mode which begins with •union of•). Also, the mode of tht:: value
referred to by su~h a •variable• as cibc, can be determined, in
general, only at the time of elaboration of the •progr::am• (not
at "compile time"). These considerations lead one to suspe~t
that the use of united modes implies storage allocation or run
time organization methods which must be more elaborate than
those required when such modes are not used (see the figure at
4). A certain pri~e must therefore be paid for the use of united
modes, but in some situations they are essential (see[R.11.11]);
moreover, ALGOL 6B is designed to minimize those places in a
•program• where a run time check of the mode of a value is
necessary. Such a check is unnecessary for the •assignations•
cib .- !£!!~C and cib := 1c. These checks are known as
•conformity-relations•. Before passing to these we examine two
further •assignation s•.

In the range of the •declaration• chn~ n, QQQ.! pa one might
be tempted to consider the objects en := ibc and cp := ibo in
the hope that the assignment would take place, if possible.
However neither of these two is an •assignation•, for in both
cases, though the mode of the nestination begins with
•reference-to•, it is not followed by the mode of the •source•.
In particular, there is no deuniting coercion. Thus we must rule
them out as not belonging to ALGOL 68.

7.3 Conformity relations

•Conformity-relations•, like •assignations•, •identity-
relations• and •casts•, are •confrontations•. Examples of
•conformity-relations• are: ci ::= ir, £g!.! :: x Qf qc and ca
and b ::= i + 2 * xc. The syntax of •conformity-relations• might
be-written

conformity relation : tertiary, conformity relator, tertiary.
conformity relator :

conforms to and becomes symbol ; conforms to symbol.
This syntax makes the •conformity-relation• appear to be
symmetrical, but this is not the case as an examination of the
strict syntax of the Report r R.8.3.2.1] will reveal. There one
may see that the •tertiary• on the left is soft, whilst that on
the right is not of any sort and therefore cannot be coerced.
Moreover, the mode of the left •tertiary• must begin with
•reference-to•. We may recall that the •destination• of an
•assignation•, i.e., the cxc in ex := 3.14c, is soft, so that
there is some similarity between •assignations• and •conformity-

88 An ALGOL 68 Companion

relations•. rhis is intentional, for the elaboration of a
•conformity-relation• often results in an assignment. The right
•unit• of an •:tssignation•, e.g., o3.14e in ex := 3.14a,
however, is strong. Thus the right •unit• of an •assignation• is
strongly coerced but the right •tertiary• of a •conformity­
relation• is not coerced.

We may now ask what the difference is between ox:= 3.14o
and ax ::= 3.14c. In the case of ox := 3.14o, an assignment is
made. In the case of ex ::= 3.14o, an assignment is also made
but not before checking that such an assignment is possible.
Another difference is that the value of ox:= 3.14o, after its
elaboration, is the name possessed by oxo, but the value of ox

- 3.14o is a truth value, viz., .true•.

Now consider ox := lo and ax ::= lo. In the case of ex :=
loan assignment of the real value, •1.0•, is made to axe after
the widening of ole to a value of mode •re:tl•, but ax::= lc
delivers the value •false. and no assignment takes place. Note
that the ala in ox ::= 1o is not coerced and in particular
cannot be widened to •real•. The reader may now protest that any
simple minded compiler could determine, at comrile time, that
the value of ox::= 3.14o is .true• and that the value of ox::=
le is •false., thus the information yielded is trivial. We
agree. However, the possibility of using united modes makes the
•conformity-relation• an essential tool, as we shall soon
discover.

We have mentioned that the right •tertiary•, e.g., the ala
in ox · ·= lo is not coerced. Therefore we may ask what will
happen with ox::= yo and ex •• - ie. The semantics of the
•conformity-relation• [R.8.3.2.2) now comes to the rescue. It
tells us that, instead of returning the value •false•
immediately, the right •tertiary•, e.g., the oyo in ox ::=yo is
dereferenced as often as is necessary or possible. Thus ox::=
yo will deliver •true. and ex ::= io will deliver •false• and in
arrivinq at this, both the oyo and the oio are dereferenced
once.

boolean-conformity-relation ••••••••••••••
I

.. ---------------------+--------------------, .true•
I I I

soft-reference-to- conformity- real
real-tertiary relator tertiary

I (1) I I
reference-to- 1 real-

real-base 1 denotaticn
.1.

ex .. -.. - 3. 14c

0 ,-------, .. ---J...._-,
o o--->---~ !==<==(assignment)==<==!

0 L------J
L_ ____ _..

Fig.7.3

(2)

The only diff<
::= 3.14o and ex::
3.14o despite the f ,
•true•. A skeletal p ;
3.14c is shown in
(it does nothing) is
•conformity-relation

We see therefor'
finding out whether •
unitei modes, this '
is known at compile
that the •conform i
given above are mere .
fundamentals of t~
practical programmin•

7.4 conformity and u1

Suppose now tha
a~n~Q~(in~. gh~~)
i c : = "a" ; i : : ic) 1

aU!!~ i ic :=
following the logic <

determined at camp .
reader who is irked J

Report (R. 1 1 • 1 1 0 • '
10.5.4.2.b] where
relations • in acti<
following problem.

We wish to writ<
accept either an in~
and will deliver e .
environ mental equiva :
qiven environment
•call• atranslate("a '
•193• and the •ci
character value •a•.

eEEQg translate =
beg!!! !!!!: i,
if i ::= a
else c :: = <

In the body-of this
determines whether
The value of the •cot
since one knows th<
.true•; however, i ·
•operator• o~!;!~o is t

1. 5 Conformity exten :

•Conformi t y-reli
for the convenience c
allowing more effici1
Examples of these ex ·

.aboration of a
tent. The right

ex := 3.14c,
assig nati on• is
a •conformity-

ee n ex : = 3. 1 4c
assignment is

. n t is a ls o rna de
is possible.

• 14c, after its
e value of ex

e case of ex : =
to exc after

, but ex::= 1c
place. Note

in particular
, rotest that any
le time, that
value of ex :: =
is trivial. We

odes makes the
we shall soon

e.g., the c1c
y ask what will
antics of the

the rescue. It
value •falsea
in ex ::= yc is

,}e. Thus ex::=
•false. and in

dereference:!

...........
a true•

I (2}
real

tertiary
I

real­
denotation

_J.. __

3. 14 c

r---.L--,

I I
L._ ____ __.

An ALGOL 68 Companion 89

The only difference between the •conformity-relations• ex
•• - 3.14e and ex :: 3.14c is that no assignment occurs in ex
3.14c despite the fact that the value yielded by ex :: 3. 14c is
atruea. A skeletal parse of the •conformity-relation• ~x ::=
3.14c is shown in figure 7.3, where the only coercion involved
(it does nothing} is shown at 1 and the value possessed by the
•conformity-relation• at 2.

we see therefore that the •conformity-relation• is a way of
finding out whether an assignment is or is not possible. Without
unitei modes, this would be of no value, since this information
is known at compile time. It is only when united modes are used
that the •conformity-relation• is useful. Thus the examples
given above are merely for the purpose of illustrating the
fundamentals of the •conformity-relation• and have no value in
practical programming.

7.4 Conformity and unions

Suppose now that we are in the reach of the •declaration•
C!!!!l:Q!!.(!!!!:, ~h~E} icc. Then the value of the •clause• c(int i;
ic := "a" ; i :: ic}c is afalsea and the value of the •cii;se•
c<!!!! i ; ic .- 1; i :: ic}c is atruea. Note that, without
following the logic of the •program•, these values cannot be
determined at compile time. How can one use these things? The
reader who is irked by trivialities is advised to turn to the
Report [R.11.1 10.5.2.1.b, 10.5.2.2. {, 10.5.3.1.b, 10.5.3.2.b,
10.5.4.2.b] where there are many examples of •conformity­
relations• in action. For those not so brave, consider the
following problem.

We wish to write a •procedure•, say ctranslatec, which will
accept either an integer or a character as its only parameter
and will deliver either a character or an integer which is the
environmental equivalent [R.10.1.j,k]. Thus suppose that in a
qiven environment the integral equivalent of •a• is a193a, the
•call• ~translate("a"}c should then possess an integral value
a193a and the •call• ctranslate(193)o should possess the
character value aaa. Its declaration then might be

CEEQ~ translate= (~!!!.Q!!(i!!~, ~~~E) a} ~!!i.Q!!(l:!!!• ~!!~E) :
beg!!! !!!! i, £haE c ;
!f i ::=a!!!~!! I~EI i # R.10.1.k I
else c ::=a ; abs c t R.10.1.j J !i ~!!QC

In the bodv-of this procedure the •condition•, ci ::~ ac,
determines whether the value delivered is cE~~! ic or c~~~ co.
The value of the •conformity-relation• cc ::= ac is voided,
since one knows that, if control reaches it, the value will be
atrue•; however, its presence is essential because the
•operator• c~Q~c is not defined for operands of united mode.

7.5 Conformity extensions

•Conformity-relations• occur in certain extensions, both
for the convenience of the programmer and for the purpose of
allowing more efficient implementation of certain constructions.
Examples of these extensions occur in the Report [R.11.11.q,ah].

90 An ALGOL 68 Companion

We begin by explaining them in a simple way.

The •conditional-clause•
a{ a::= u I 1 1: b ::= u

can be written
21:c::-=ul:310)c

a[* a, b , c •• - u *]a
Its effect then is to test several conformities in succession,
delivering as an integral value the index of the one which
succeeds. If all of them fail then the result .o. is delivered.
This, in itself, is useful, but its main purpose is for use as
the •unitary-clause• which follows the acasea in a case clause
fR.9.4.b,c]. In this particular situation--the two enclosing
symbols c[*D and c*]o may be omitted. A case clause might
therefore be
o£~~~ a, b, c ::= u 1!!. f (a), g(b), h{c) 2.!:!1 error exit ~~~£D

and its interpretation is the following: if cac conforms to anj
be comes cue, then the value is of (a) c; otherwise, if obc
conforms to and becomes DUD, then the v:~.lue is og {b) D;
otherwise, if ceo conforms to and becomes cue, then the value is
ch(c)o; otherwise the value is that of cerror exitc. Note that
if both aa ::= uc and cb ::= uc possess the value atcue•, then
it is undefined whether the value is of (a)o or og(b)o. EJamples
of the use of this extension are in the Report [R.11. 11.q,ah].
We could perhaps write the procedure of section 7.4 as follows:

D££Qf translate= (!!.!!l2.!!C!.!!i• £Q~£)a)!!!l.!Q!l.(l!l.!, fh~£)
f~~!!l. !!!.! i, fh~£ c ;
case i, c : : .= a i!l. £_g.E_E i, ~B~ c ~~~£
en.Qo

though little would be gained in this simple example.

The description of the extensions [R.9.4.e,f], however, is
forbidding and it is perhaps worth while taking a little time to
discover why it must appear in this way. Suppose we have the
conformity case clause o(x, x ::= u 1 9, 8 I error)o. It is
clear that if it is interpreted as the equivalent of a (x ··= u
1 9 1: x : := u 1 8 1 error) o, then the value •8• can never be
delivered. This is unfortunate, for the implementer of the
language may find it convenient and mace efficient to make the
conformity test in an order different from that given. It
therefore should be made impossible for the programmer to
determine from the Report the order in which the conformity
tests are made. This can be done by describing the extension by
means of parallel processing. It is worth our while to examine
this m~re closely.

According to the Report [R.9.4.e], the •clause• o(* x, x
::-= u *]o, in the reach of creal x, Y!l.iQ.!!(!.!l.!• _Eg~1J uo, is
equivalent to the following

o(!!l.i i, ~~~~ s = /1 ; !!!l.lQ!l.(iTii• £!~!) k = u ;
.E~£ ((x : : = k 1 .QQ~!l. s ; i : = 1 ; m) ,

(x : : = k 1 g_Q~!l. s ; i : = 2 ; m)) ; 0 • m : i) o
The •declaration• aunion (int, real) k = uo ensures that
elaboration Of DUO OCCUrS-OnCe only;-its value is then held
eke. The •declaration• c~em~ s = /lo, declares a semaphore
r R.10. 4] which will be used to control the elabor:a tion of
two •clauses• in parallel. The semaphore is initialized to

the
in

esc
the
the

value •1•. Th(
this conformi
so v hich drop!
a barrier in 1
this action
predict vheth '
programmer,
implementer w:
be caught if l
than another.

The rea
extensions in
is necessary
c/1 c because
integral righ·
The letter
returns to th
which accept
equivalent se

7.1 Unite

a) I s c .!:!!!.12.!! (
re lation•

b) Is D_!:!!l.lQ.!! (
c) What is

union(boo
d) I s-ari :n]y
e) Is cy!l.;!Q.!!(

7.2 Assig

a) In the rea
•assignat

b) In the r
•assignat

c) In the cea
the value

d) Is o !!!!. i o!!. I
e) In the r

•assignat

7.3 confo

a) In the rea
ore .. rc

b) What is th
c) In the rE

ibr, E£ l
d) In the rea

•assig nat

) c

~ccession,

)De which
!eli vered.

use as
se clause
enclosing

tuse might

t ~§!!go
ns to anj
~, if cbc

og (b) o;
~ value is
Note that

Ie•, then
. Examples
11.q,ah).
fallows:

!£> :

~wever, is
le time to
have the
)c. It is
(x::= u
n never be

of the
) make the
Jiven. It
Jrammer to
conformity
tension by
o examine

» c(* X, X

uo, is

J

5 that the
held in

aphore DSO
~ of the
ed to the

An ALGOL 68 Companion 91

value •1•. The two clauses beginning with ex • ·= lm, are, if
this conformity is successful, followed by the •formula• cQQ~ll
sc which drops the value of the semaphore to •0• and thus forms
a barrier in the elaboration of whichever •clause• did not reach
this action first. From this it is therefore not possible to
predict whether the value •1• or •2• will be delivered. To the
programmer, this is an unimportant matter, but the meticulous
implementer will be pleased that there is no w~y in which he ~an
be caught if he decides on one method of implementation rather
than another.

The reader should now examine the description of the
extensions in the Report (R.9.4.e,f,g) where he will see that it
is necessary in this description to have o(S 1 1)o rather than
o;1c because the •operator• o;c as a •monadic-operator• with an
integral right •operand• could be redefined by the programmer.
The letter oSo stands for the •standard-prelude• and therefore
returns to the original meaning of c/o as a •monadic-operator•
which accepts an integer as right •operand• and delivers an
equivalent semaphore. , ,

Review quest ions

7.1 United declarers

a) Is ounion(int, QQQ1)
relation·?--

: =: an

b) Is ounion(int, QQQ1) := boolc an •assignation•?
c) what--Is- the value of--~Y~i2n<!nt. Q]lQll(QQQ1,

union (bool, char, int)a?
dJ Is-af1:n]Qni2nt£h~E-.-In!lo a •declarer•?
e) Is D]QkQE(iE!r §!E]£!<in! a))c a •declarer•?

7.2 Assignations with united declarers

a) In the reach of a]llkQE (fh~E· Q2Q1) cbo, is
•assignation•?

ccb

.~ -

•identity-

. - 1 o an

b) In the reach of D]~ion(£~~1. ~QQ1) rho, is orb:= 1o an
•assignation•?

c) In the reach of O]QiOQ(£~~1, Q2Q1) rho, what is the mode of
the value referred to by the name possessed by orba?

d) Is cy!!io~ (Q,i!§, QI!~§) :=: n.Ho an •identity-relation•?
e) In the reach of o]Q,!Q~(!n!, £h~£) icc, is oic := ic + 1o an

•assignation•?

7.3 conformity relations

a) In the reach of oyQ!QE(£§~1. £h~f) reo, what is the value of
ore :: reo?

b)
c)

d)

What is the value of ox ::= truec?
In the reach of omooe b.r = union(bool, £§!!1); YEiQE(in!, Q£)
ibr, br bra, what-Is-the vaiue-of-aibr ::=bra?

In the-reach of oun!on (~221• in!> bio, is obi := i ::= 1o an
•assignation•?

92 An ALGOL 68 Companion

e) Is ex :: = x :: = xc a •conformi ty-re lati on•?

7.4 Conformity and unions

a) In the reach of cyE!2E(fh~f, ~221) cbc, is ex ::= cbo a
•conformity-relation•?

b) In the reach of ey!!_!on ([]E~~!_, !~~}) r1ro, is cr1r ::= 3.14c
a •conformity-relation•?

c) Can D.!!B!2E ([J!!!!• []E~! !!!!) c be contained in a proper
•program•?

d) In the reach of D.!!!!iQB(!nt, E~~!) ire, can cir := 1c possess
a name referring to a real value?

e) Declare a •procedure• which will accept an integer and
deliver its square root, as an integer if it is integral
and, otherwise, as a real value.

7.5 Conformity extensions

a) What is the value of c(x, i, b ::= 1 1 3, 4, 5() 1 6)c?
b) What is the value of c(£~~1. E~~1, E~~1 3.14 I 7, 8, 9 I

10) c?
c) Is c§~!~ p = 1c a •declaration•?
d) Is Cf~§~ x, i, b :: u !E f(x), g(i) 2.!!! h ~§~fC a valid ALGOL

68 ob-ject?
e) In the reach of eunion(char, int, ~221) cibc is ccib : :=

§!!Qc a •conformitv=relation;?-
f) Is ex : := gg_,tQ kc a •conformity-relation•?

8 Formulas and

8. 1 Formulas

In sectic
simplified syn

formula : o~
monadic Of

This is gooa
help to explai

is elaborated
question then
to determine t
the syntax of

PRIORITY for
PRIORITY c

PRIORITY ope
PRIORITY f

priority NIN
monadic oper
monadic form

[simplified
productions of
•priority-one­
Thus, •priorit
is evident t
as a counter
priority not
and the right
its associated
shorten the

r-----
p6-operand

I
I
I
I

secondary
~

ex

way, to •p1, F
obtain, from t
rules:

p1 formula
p1 operand
p2 formula
p2 operand

p9 formula

•n

. ?
.1. on • .

:l cbc, is ox::= cbo a

1rc, is or1r ::= 3.14o

contained in a pr o per

can air := lo possess

accept an
•r if it

integer and
is integral

3 , 4, s() I 6) o?
~1 . . 3 • 1 4 I 7 I 8 I 9 I

h ~g£c a valid ALGOL

cibc is ccib .. -
on•?

An ALGOL 68 Companion 93

8 Formulas and operators

8.1 Formulas

In section 3.11 •formulas• were discussed and the following
simplified syntax was presented:

formula : operand, dyadic operator, operand ;
monadic operator, operand.

This is good enough as a first approximation but it does not
help to explain that a •formula• such as

D X + y * ZO
is elaborated in the order suggested by ox + (Y * z) o. ·rhe
question then is how the priority of the •operators• may be used
to determine the order of elaboration. A closer approximation to
the syntax of •formula• (still ignoring modes and coercion) is

PRIORITY formula : PRIORirY operand,
PRIORITY operator, PRIORITY plus one operand.

PRIORITY operand :
PRIORITY formula ; PRIORITY plus one operand.

priority NINE plus one operand : monadic operand.
monadic operand : monadic formula ; secondary.
monadic formula : monadic operator, monadic oferand.

[simplified from R.8.4.1.b,d,e,f,g]. Here the terminal
productions of •PRIORITY• are fR.1.2.4.a, ••• ,n] •priority-one•,
•priority-one-plus-one•, •priority-one-plus-one-plus-one•, etc.
Thus, •priority-NINE• has the meaning that one might expect. It
is evident that the metanotion, •PRIORirY•, is being used here
as a counter to ensure that the left •operand• must have
priority not less than that of its associated •dyadic-operator•
and the right •operand• must have priority grater than that of
its associated •dyadic-operator•. We shall find it convenient to
shorten the terminal productions of •PRIORITY•, in an obvious

p6-formula
I

r-------------T-----------~-----------~
p6-operand p6-operator p7-operand

I I I
I I r---------t---------,
1 1 p7-operand p7-operator p8-operand
I I I I I

secondary 1 secondary 1 secondary
~ ~ ~ ~ ~

ox + y * zc

Fig .8. 1. a

way, to •pl, p2, p3, ••• •. Using this shorthand notation, we
obtain, from the first three rules above, the following nineteen
rules:

p1 formula
pl operand
p2 formula
p2 operand

p9 formula

pl
p1
p2
p2

p9

operand,
formula ;
operand,
formula ;

operand,

pl opera tor, p2 operand.
p2 operand.

p2 opera tor, p3 operand.
p3 operand.

p9 opera tor, plO operand.

94 An ALGOL 68 Companion

p9 operand : p9 formula ; p10 operand.
p10 operand : monadic operand.

We may now present, in figure B.1.a, a simplified parse of the
•formula• ex + y * ze, remembering that e+o is a •p6-operator•
and e*o is a •p7-operator•.

Because a •dyadic-operator• requires that
•operand• be of the same priority (or higher) and that
•operand• should be of higher priority, the •formula•

DX + y + ZD

is elaborated as if it were c(x + y) + zo, for the only
parse is that sketched in figure 8.1.b.

p6- formula
I

its left
its right

possible

r--------------.J..---------r------------,
p6-operand p6-opera tor: p7-opera nd

I I I
p6-formula I I

I I I
r----------.J..T-----------, I I

p6-operand p6-operator p7-operand 1 1
I I I I I

secondary 1 secondary 1 secondary
.J..

ex +

..1

y

Fig.8.1.b

.J..

+
.J..
ZD

It is important to observe that, in a •formula• containing
several •operators•, the •operands• of each •operator• are
determined solely by the priorities of the •operators• and do
not depend in any way upon the modes of the •operands•. Thus,
assuming that the •operator• cgje has priority •1•, og_6o has
priority •2• and so on, we know that the •formula•

ch ~1 i g£ j d5 k g~ 1 ~1 m g~ no
must be elaborated in the order suggested by

e(h .Ql i) ~£ ((j .92 k) ~~ (1 .91 (m ~~ n)))o
without any knowledge of the modes of ch, i, j, k,
one. The compiler writer appreciates the necessity for
independence and the programmer gains because of the
clarity in the meaning of •formulas•.

8.2 Priority declarations

1, me :.n:l
this mode
resulting

•Priority-declarations• were mentioned, in passing, in
section 3. 11. An example of a •priority-declaration• is

which is
prel uJe •
is shown
shorthand
token•.

D££i2Ei!1 + = 6o ,
indeed one of the •declarations• in the •standard­
[R.10.2.0.a]. A parse of this particular •declaration•
in figure 8.2, where •6-token• is used here as
for •one-plus-one-plus-one-plus-one-plus-one-plus-one-

The syntax of •priority-declaration• is
•priority-declaration : priority symbol,

priority
fR.7.3.1.a],
[R.1.2.4.f] i

r---·

I
priority-sy

__ _J_ __ _

DEEiQEH1

• token • on th •
on the left.

The fir::
section 8. 1 a l

but all of the
extension [R.'

DE!
.Q~

Observe tha1
indica tions•,
only those
representatioi
implementatio1
will permit r:t
such char:actt
al rea:ly used c

8.3 Operation

Among tt
declarations•
declarationB•
primitive for:n

A simpli1
operation dE

caption, E
caption : Of

rH.7.5.1.a,b],
to convey infc
• parameters•
about the pric
or dyadic.

An examr
language) is

((I'€!!
and a simple f
language it rna

lified parse of the
a •p6-operator•

its left
its right

the only possible

-----------,
tor p7-opera nd

I
I
I
I
I
I

secondary
J..

zo

ormula• containing
ch •operator• are

operators• and do
e •operands•. Thus,

y •la, cd2o has
ula• --

n))) o
1, j, k,
sity for
of the

I

l, me an1
this mode
resulting

in passing, in
tion• is

I

n the •standard-
ular •dec lara tion•
is used h ere a s
plus-one-plus-one-

An AlGOL 68 Companion 95

priority NUMBER indication, equals symbol, NUMBER token.• ,
rR.7.3.1.a], where we may observe that the metanotion •NUMBER•
[R.1.2.4.f] is used as a counter to ensure that the value of the

priority-declaration
I

r----------------r----------..1..-----r----------------,
I I I I

priority-symbol p6-indication equals-symbol 6-token
___ J.. ___ _

J..

+ 6c

Fiq.8.2

•token• on the right is the priority of the •dyadic-indication•
on the left.

The first two •dyadic-indications• [R.4.2.1.d) used in
section 8.1 above might have been declared in

o~~!Qfl!I Qj = l, £~!Qii1I Ql = 2o
but all of them might be declared more compactly by using an
extension [R.9.2.c) which allows elision of Dff!2~!!Yos, as in

D£Ii2Ii1Y ~1 = 1, ~l = 2, ~1 = 3, 1~ = 4,
as = 5, d6 = 6, d7 = 7, d8 = 8, d9 = 9a

Observe that the -programmer may--choose--his own •dyadic­
indications•, like odlo and od2o and is not constrained to use
only those which-- appear--in the Report. The particular
representations permitted will be determined by the
implementation, but it is expected that most implementations
will permit representations like o~lc and cgJo together with
such characters as c?a and c!o, if available, and which are not
already used as representations of some symbols (R.1.1.5.b).

8.3 Operation declarations

Among the well known programming languages
declarations• may be unique to ALGOl 68. Certainly
declarations• are rare. The latter exist, perhaps
primitive form, in APL where all priorities are the

•pri ori t y­
•operat ion­
in a more

same.

A simplified syntax of •operation-declaration• is
operation declaration :

caption, equals symbol, actual parameter.
caption : operation symbol, virtual plan, operator.

r H.7.5. l.a,b), but the strict syntax uses the metanotion •PRAM•
to convey information about the number of and the modes of the
•parameters• and the metanotion •ADIC• to convey information
about the priority of the •operator• and whether it is monadic
or dyadic.

An example of an •operation-declaration• (in the strict
language) is

DQE (£~~1. £~~!) f~~1
((re~± a, f~~1 b) I~~! (a>

and a simple parse is shown in figure
language it may be written

.!!!~.! =
b 1 a 1 b))o
8.3. In the extende1

96 An ALGOL 68 companion

CQ£ .!!!~.! = (J;g_~J a, b) f~~! (a > b I a I b) c ,
for if the •actual-parameter• is a •routine-dentation•, then the
•plan• may be elided and the •routine-denotation• may be

operation-declaration
I

r------------r-~---------------,
caption equals- actual-

1 symbol parameter
r----------.L--r-------, I I

operation- virtual- oper-1 I
symbol plan ator: I I

I I I I I
.J._ _ ________ .J._____ -L- L ----------------.L---------------

CQE (~g_~!, ~~~1)E~~! ~~.! = (f~~! a,b)~~~!: (a> b I a I b)c

Fig.8.3

unpacked [R.9.2.e,d]. Before going further we
that this •declaration• can only occur in
•priority-declaration• like C£fi2fi~Y ~~! = 7c.

should remember
the reach of a

In the reach of the •declarations• given above, we may have
a •formula• like ex max y + 3.14c. Since the priority of the
standard •operator•-c+o is six, we should expect this •formula•
to be elaborated in the order suggested by n (x !!!~! y) + 3.14o.
If the •priority-declaration• had been OEfiQfi!Y ~~.! = 5o
instead, then the •formula• would be elaborated as if it were ox
!!!~! (y + 3. 14) c.

The •actual-parameter• need not necessarily be a •routine­
denotation•. For example,

oQ£ (~!firrg, iEt> 1~! ~1 = string into .
is an •operation-declaration• in which the •actual-parameter• 1s
an •ijentifier•. The •operator• o~jc is then made to possess the
same routine as that possessed by cstring into [R.10.5.2.2.c].
In the reach of this •declaration• the •formula• o"+123" §! 10c
will possess the same value as that possessed by the •call•
ostrinq int ("+ 123", 10) c. Observe that

DQ£ §! = string in t o
is not an •operation-declaration• because cstring into is not a
•routine-denotation• so the •plan• o (§!~!.!!9• i!!!) irrto cannot be
elided.

It is not necessary that an •operation• should deliver a
value, but if it does not, then a •formula• containing such an
•operator• cannot be used as an •operand•. Thus one loses some
of the advantages of •operators•, except perhaps for the benefit
of compactness of expression.

An example is
CQ£ irr!g_~~h~E9~ = (f~! ~g_~! a, b)

(a : "I: b 1 rg_~..! t = a ; a : = b ; b : = t) o ,
whose •operator•, ojg~g_f~h~]g~o, could be used in the •formula•
ex 1rrtg_f£hang~ yc. The same effect would be obtained by means of
the •identity-declaration•

llj!J
(d : i

whose •identi 1

cinterchange (x,
parameter: • i!
• dec l a r: at ions • <

•Operation­
of algorithms
priori ties rna y
•formula• like

is s::>metimes
nesting of •cal l

although LISP lc

8.4 Elaboration

An •operat i
that routine 1

[R.7.5.2]. In tl
OQI! _!!!~_!

the •operator:• 1

• (!~~! a = ~~j
This is, of COUJ

denota tion• wh :
elabor:a tion of c
that of the • !
the •actual-par<
• parameters•.

8.5 Dyadic indi<

Although t !
representation
the identificat .
distinct pr:oces:
• closed-clause•

a (Ef;

.Q£

X :

there are thr t
occurrence is t :
[R.4.2.1.e, 4 • .
occurrence of cJ
occurrence as
occurrence of aJ
indica tion• and
each of the
two notions, bo·
process. Si nee
defining occurr:

b) 0

)ll.,

ion•

r

,
then the

rna y be

> b I a I b) o

remember
reach of a

r we may have
city of the
his •formula •
0 + 3.14o.
~y ~H 5o
if it were ox

a •routine-

Darameter• is
o possess t be

1
1o.s.2.2.c].

t123" ~!. 1 Oo
oy the •call•

~ to is not a
1to cannot be

[d deliver a
I mg such an
1e loses some
: the benefit

I I

e •formula•
I by means of

An ALGOL 68 Companion 97

•

o~fQ~ interchange = (f~f £~~! ~?)
,

•call•
(a : ~ : b 1 £~~1 t = a ; a : = b t/ b : -= t) n

whose •identifier• could then be used in the
ointerchange(x, y) o. One might observe that the •actua 1-

i n both parameter• is the same •routine-denotation•
•declarations• above.

•Operation-declarations• may
of algorithms since •formulas•
priorities may be built to do
• formula• like

therefore allow a compactness
using •operators• of several

any job we may require. A

ox ~~! y ~~! 0. 1o
is s~metimes a more pleasing expression of thought than a
nesting of •calls• like

omax(max(x, y), 0.1)o
although LISP lovers may not agree.

8.4 Elaboration of operation declarations

An •operation-declaration• causes its •operator• to possess
that routine which is possessed by its •actual-parameter•
[R. 7. 5. 2]. In the elaboration of

CQ£ ~~! = (f~~J a, b) £~~! : (a > b I a I b) c
the •operator• o~~!c is made to possess the routine

• (!~~1 a -= ~~.!.!:?, E~~l b = ~~!..!:? ; !~~1 : (a > b I a I b)) • •
This is, of course, already the value possessed by the •routine­
denotation• which is the •actual-parameter• on the right. The
elaboration of an •operation-declaration• is thus similar to
that of the •identity-declaration•, particularly that in which
the •actual-parameter• possesses a routine with one cr two
• parameters•.

8.5 Dyadic indications and operators

Although the same occurrence of an external object may be a
representation of both a •dyadic-indication• and an •operator•,
the identification of the object, as it plays each role, is a
distinct process. An example may help to illustrate this. In the
•closed-clause•

a(.I:?I!.2E!!I ~~! = 7 :
¢1¢

X := X ~~! y + 3.14)
¢3¢c

(a>blalb)

there are three occurrences of the object o~E!o· The first
occurrence is the defining occurrence of a •dyadic-indication•
fR.4.2.1.e, 4.2.2.a); the second occurrence is an appliej
occurrence of omaxo as a •dyadic-indication• and its defining
occurrence as -an •operator• [R.4.3. 1.b, 4.3.2.a); the third
occurrence of omaxo is an applied occurrence of a •dyadic­
indication• and-an applied occurrence of an •operator•. Thus, in
each of the last two occurrences, the object o~E!o represents
two notions, both of which are involved in the identification
process. Since an applied occurence must always identify a
defining occurren~e [R.4 . 4.1.b], the last occurrence of o~~!D

98 An ALGOL 68 Companion

identifies two defining occurences, i.e., the first as a
•dyadic-indication• and the second as an •operator•. In figure
8.5 we sketch the parse of each of the three occurrences of
D~!!D and indicate by "<===" how the identification occurs.

priocity­
declaration

I
r-------+------~,
I I
I dyadic
I indication <--------
I I

operation­
declaration

I
r----~--T-,

I I
1 operator <====
I I
1 dyadic
1 indication <====
I I

.J._ __.J.

Fig.8.5

formula
I

r----+-----,
I

operator
I

dyadic
indication

I
__.J._

ox :!!!!! yo

It is thus helpful to remember that an object like oJ!!~,!o,
except in a •priority-declaration•, must be considered first as
a •d yadic-i ndication • (carrying the in for mat ion about priority)
and second as an •operator• (possessing an operation - a
routine). As a •dyadic-indication• it may identify only one
defining occurrence [R.4.2.2, 4.4.2.b], but as an •operator• it
may, at different applied occurrences, identify mora than one
defining occurrence [R.4.1.2]. One need only consider the
•formulas• o3. 14 + 4.25o and o123 + 456a to realise that the
standard •operator• a+o, in the first •formula•, must be that
which adds two real values rR.10.2.3.i] and in the second it is
that which adds two integral values [R.10.2.4.i]. This
"overloading" of •opecators• (i.e., allowing them to have moce
than one meaning) has been traditional both in mathematics and
in programming languages, so that it should not be difficult for
us to remember that in ALGOL 68 any •operator• may have a
meaning which depends upon the modes of its •operands•.
Moreover, the programmer now has the power to overload operators
at will.

8.6 Identification of dyadic indications

The identification of •dyadic-indications•, like that of
•identifiers•, is a simple process. For each applied occurrence
one must search in the current •range• for a defining
occurrence. If it is not found, then one searches in the next
outer •range• [R.4.2.2.b]. rhe process is then repeated. If a
•particular-program• contains no •priority-declarations•, then
the defining occurrence of any •dyadic-indications• will be
found in the •standard-prelude• (or perhaps a •library­
prelude•). Since •dyadic-indications•, again like •identifiers•,
are subject to protection [B.6.0.2.d, 6.1.2.a], i.e., to
systematic replacement in a •closed-clause• in order to avoid
confusion with the same object used elsewhere, it follows that
the occurrence of, say

------- -

in s3me •range• w
•operator• o+c, i
inaccessible. A sma
In the object

o(E!:!QI~

QE ~~!
¢2¢

X := 1

X : =

) 0

the fifth occurren
Moreover, due to pr
of these occurrenc
•indicant• which is
occurrence of o~~
occurrence. Because
could not be con
the changing of pri
undertaken lightly.

8.7 Identification

The identifi:::a
not sufficient for
•operation-declarat
• dyad ic-i ndi cation •
different occurre
occurrence. rhe aid
follows. The mod
coerceable to the m
•operation-declarat
be firmly coercea
parameter•; otherwi
proceeds to the
•range•, or, as bef
illustrate this wit

[]II'! 11t (!!
11'!2¢ Q

¢3¢
¢4¢
¢5¢

The question to b
is identified by th
in line 5. one
•formula• occurs. T
in this •range•, us
the first requireme
o2.3n cannot be
identification of •
next outer •range
•operation-declarat

first as a
In figure

c urre nces of

or mula
I

--+-----,
I

era tor
I

dyadic
tiicati on

I
~-

!!)~! YD

like C.fll~!0 1
red first as
t priority)
eraticn - a

only one
oper-ator• it

than one
the

e the
must be that
econd it is
.4.i]. This

have more
ematics and

ifficult for
may have a

•operands•.
ad operators

ke that of
d occurrence
a defining

in the next
a ted. If a
tions•, then
s• will be
a •library­
dentifiers•,

i.e., to
der to avoid
allows that

An ALGOL 68 Companion

in s3me •range• will mean that all operations possessed
•operator• c+c, in the next outer •rflnge•, will
inaccessible. A small example may help to make this point
In the object

o{ E~i2£!!I .fll~! = 7
¢111!

2E ill~!~ {~~~1 a, b)fg~1
¢2¢

X : = 1 • 2 3 _!!!~! J ;
¢3¢

) 0

Efi2~!.!I .!!!~! = 5
¢4¢

X : ~ 2. 3 4 _!!!~! J)
rt5¢

{a>blalb)

99

by the
become
clear.

the fifth occurrence of D!~!C identifies the fourth occurren~e.
Moreover, due to protection of the inner •closed-clause•, both
of these occurrences are systematically changed into some other
•indicant• which is not used elsewhere. Consequently, the last
occurrence of D!~!D is that of an •operator• with no defininq
occurrence. Because of a context condition [R.4.4.1. b), this
could not be contained in a proper •program•. This means that
the changing of priorities of the standard •operators• cannot be
undertaken lightly. Perhaps it is just as well.

8.7 Identification of operators

The identifi::ation of •operators• is not as simple. It is
not sufficient for the •symbol• to match that which occurs in an
•operation-declaration• since, as we have said b e fore, one same
•dyadic-indication•, when considered as an •operator• may, at
different occurrences, identify more than on e defining
occurrence. The additional requirements to be satisfied are as
follows. The mode of the left •operand• must be firmly
coerceable to the mode of the first •formal-parameter• in the
•operation-declaration• an~ the mode of the right •operand• must
be firmly coerceable to the mode of the second •formal­
parameter•; otherwise, the search for a defining occurrence
proceeds to the other •operation-declarations• in the s~me
•range•, or, as before, in successive outer •ranges•. We shall
illustrate this with a simple example.

0 ¢1¢ { E~!Q.£!.!1 2 = 8 ;
¢2¢ QE Q = ~~A1 a, b)~~~1: 3.14 ;
¢3¢ { QE Q = {~~!!a, !~!b)£~!!: 3.15
¢4¢ { QE .2 = <!~22! a, b) £~!1 3.16 ;
¢5¢ 2.3 2 X)))D

The question to be answered here is, which defining occurren::e
is identified by the •operator• c2o in the •formula• o2.3 .2 xc
in line 5. One first searches the •range• in which that
•formula• occurs. There is an •operation-declaration•, on line 4
in this •range•, using the same •dyadic-indication• OQD. This is
the first requirement. However, since the mode of the •operand•
o2.3o cannot be firmly coerced to •boolean•, this attempted
identification of •operators• fails and we must search in the
next outer •range•. This next outer •range• also contains an
•operation-declaration•, in line 3, but again the identification

100 An ALGOL 68 Companion

fails since the mode of oxo cannot be firmly coerced to
•integral•. (Note that it is sufficient to have the failure
occur in only one •operand•.) We must now search in the next
outer •range•, which contains yet another •operation­
declaration•, in line 2, using the same •dyadic-indication•.
This time the identification succeeds since the mode of both
o2.3c and oxo can be firmly coerced to •real•. The value yielded
by the •formula• is therefore •3.14•.

8.8 Elaboration of formulas

In section 5.1 we discussed the elaboration of a •call•.
The elaboration of a •formula• is similar. As an example,
consider . the •clause•

o¢1¢ EEi2E!~1 max = 7 ;
¢2¢ QE ~~! = (real a, b) £~~!
¢3¢ (d > b I a I b)
¢4¢ x := 3.14 !!~ y)o

Here the •operator• cmaxc, in line 2, possesses the routine
• (£~~.! a = ~~!£, £g~];-b = sk!£ ; !g!.! : (a > b I a 1 b)) • •

The elaboration of the •formula•, in line 4, then has the
following effect. In a copy of the routine possessed by D!~!c,
the two a~~!£oS are replaced by the •operands• of the •formula•.
The resulting object

0(£~!.! a = 3.14, rg!.! b = y
which is a •closed-clause•,
elaborated. Its value is then
is therefore nothing new to
• formulas•.

; !~!! : (a > b 1 a 1 b)) c ,
replaces the •formula• and 1s
the value of the •formula•. There
tell about the elaboration of

Since it seems that each operation in a •formula• involves
a sequence of actions like those in the elaboration of a •call•,
it may be thought that the execution of ALGOL 68 programs will
be necessarily slow. This need not be the case, for the
implementer will undoubtedly produce in-line code for the
translation of a •formula• like ex + yc (perhaps only one
machine instruction). Provided that the effect is the same, he
is free to produce any machine instructions for doing the job
(see the note after 10.b Step 12 in the Report).

8.9 Monadic operators

The most significant fact concerninq •monadic-operators• is
that they are always of priority ten. There are no •priority­
declarations• for •monadic-operators•. Because of this, monadic
operations are always performed first. This is a simple rule ani
is easy to remember. It means that the value of c-1 ** 2c is •1•
and not •-1•, contrary to its meaning in ALGOL 60 and in
FORTRAN. The reason for making this choice has been explained
earlier in section 3.11.

Because of the syntax
monadic formula : monadic operator ; monadic operand.
monadic operand : monadic formula ; secondary.

[R.8.4.1.f,g], the elaboration of a •formula• containing a
sequence of •monadic-operators• proceeds from right to left.

Thus the •formula•

is elaborated in th
A sketch of the Pir

r---- ·
operator

I
I
I
I
I
I
~-

cf!l:!!

The i dentific<
the •dyadic-operato J
only one •operand•
• formal-parameter• .
for •dyadic-operata;
coerceable to that c

c¢1Jt (OI
¢2¢ (

¢3¢
in which the •opE
•operator• in line 1
be firmly coerced tc
the •formula• Of!! !n

8.10 Related modes

Two modC!s ire
coerced from one sam
modes specified by 0
because both can be
D£~! IQ!]c. (We s
phrase "the mode spe
" 0 !!! 0 "·) Thus cref re
empty coercion~- an
proceduring. one rea
modes is to exclud
fR.4.4.3.dl. Conside

. C)!Ql,QQ (
S1nce cxo is in i
der~ferencinq, proc
ass1gnment can oc~ur
occur with an imm
ambiguity. For this
from proper •program

Another reason,

>erced to
1e failure
the next

>pera tion­
Hcation•.
le of both
1e yielded

a •call•.
n example,

uti ne
I b) l • ·

has the
. by CJ!l~!Ct
•formula•.

b)) c ,
1• and l.S

1la•. There
>ration of

a• involves
E a •call•,
grams will
9, for the
e for the
ps only one

same, he
~ng the job

erators• is
•priori t y­

is, monadic
11e rule a n:l
• 2c is •1•
60 and in

!n explained

I d.

>ntaining a
}ht to left.

An ALGOL 68 Companion 10 1

Thus the •formula•
chin round - xc

is elaborated in the order-sugqested by CQiE (~2grr~ (- X)) c.
A sketch of the parse of this •formula• is shown in figure B.9.

formula
I

r--------L---------,
operator operand

I I
I r--------~--------,
1 operator operand
I I I
I I r------~-----,
I 1 operator orerand

__ .J.. __

Fig.8.9

~ ~

XD

The identification of •monadic-operators• proceeds as tor
the •dyadic-operators•, the only difference being that there is
only one •operand• which must be checked aqainst the only
•formal-parameter• in the mona<lic •oper-ation-declaration•. As
for •dyadic-operators•, the mode of the •operand• must be firmly
coerceable to that of the •formal-parameter•. An example is

c¢1¢ (QE ~ = (Q.QQ.!: a) lrr! : (a I 100 1 0)
t 2¢ (QE ~ = (i!!t a l irr! : 2 o o
¢3¢ ~ .tru~))o

in which the •operator• o~o , in line 3, identifies the
•operator• in line 1, since the value possessed by o!I~~o cannot
be firmly coerced to a value of mode •integral•. The value of
the •formula• o~ !I~~o is therefore •100a.

8.10 Related modes

Two modes are "related" if each of them can be firmly
coerced from one same mode fR4.4.3.b]. An example is the pair of
modes specified by af~f I~~l:o and DEIQf £~~.J.:o. These are related
because both can be firmly coerced from the mode specified by
C£~! IQ~ja. (We shall find it convenient here to shorten the
phrase "the mode specified by D!!!D" to "the mode a~a", or even to
11 D!!!_o 11

.) Thus CI~! I~~jo may be coerced to or~! f~~jo, by the
empty coercion, and to O£IQf fg~.J.:c, by dereferencing and then
procej uri nq. One reason for defining this relationship bet ween
modes is to exclude some dubious unions from proper •pro~rams•
r R. 4. 4. 3. d l· Consider, for- example, the •declara tion •

a~!!!Qrr(EIQf r~~l:. I~! I~21> pr := xo
Since axe is in a strong position it may be sutjected to
dereferencinq, procedurinq and then uniting, whereupon the
assignment can oc~ur. On the other hand the assignment can also
occur with an immediate uniting of oxo. There is thus an
ambiguity. For this reason, unions of related modes are excluded
from proper •programs•.

Another reason, which has to ao with •operators•, mdy

102 An ALGOL 68 Companion

0-­
Q

become clea~ by examining th J / following:
a(QE ~ = (E~Qf ~~~~ !~! : 0 ;

2E ~ = (~~f £~~1(!~! : 1 ;
x : = 3. 14 ; i : = m x) a

What is the value assigned to cio? Is it .o. o~ •1•? Since oxo
may be fi~mly coe~ced both to the mode D£~! ~~~1o and to the
mode DE£2f ~&~±c. it is clear that the~e are two defining
occur~ences of the •operator• o~c in the same ~ange. This
possibility must also be excluded f~om prope~ •p~og~ams•
fR.4.4.3.d].

A first attempt to achieve this exclusion might be by
forbidding the occurrence of two •ope~ation-declarations•, in
the same ·~ange•. if thei~ corresponding •operands• a~e of
~elated modes. However, this is not enough as the following
example shows:

o (2E + = ([)~gf £~~.! a, b) £g~1 : 0.0
2E + = (()~g~1 a, b) !:~~1: 1.0
x1 := (x, y) + (y, x))c

In this example the modes o[]£~~±o and c[]£~! f~~1a are not
~elated, nevertheless we have two defining occu~rences of the
same ope~ator o+o, as used in the •formula• in the last line. It
is fo~ this ~eason that the concept of "loosely ~elated" is
developed in the Repo~t. Fa~ most programme~s and most
implemente~s. this concept is sufficient to exclude multiple
definitions of •ope~ators•. It has been shown that the~e are
certain pathologi=al cases which can still slip th~ough into
prope~ •p~og~ams•. Fa~ a discussion of these the ~eade~ is
referred to a p~per by W~ssner and the discussion following it
f W l· A new wo~ding of the context condition [R. 4. 4. 3. b) is thus
likely to appear in the revised Report.

8.11 Peano curves

In the following example we assume that there is a plotting
device and a •library-p~elude• (fo~ plotting) containing
•decla~ations• of the •identifie ~s· ax, y, plato and cmoveo.
Both axe and eye 3re ·~eal-va~iable s•, the two coordinates of
the plot pen. The •p~ocedure• oploto first lowers the pen and
then plots a straight line from its cu~~ent fOsition to the
position whose coordinates a~e c(x, y)o. The •procedu~e· omoveo
fi~st ~aises the pen and then moves it to the position o (x, y) c.

In mathematics it is known that a uniformly convergent
sequence of continuous cu~ves (e.g., polygonal lines) will
converge to a continuous curve. The particular example we have
in mind is a sequence which defines a continuous cu~ve passing
th~ough eve~y point of a square. It helps in proving that the
points of a squa~e a~e in one-to-one correspondence with the
points of a line interval. These are known as the Peano curves.
The plottinq of the app~oximants is an interesting exercise
(provided that one has plenty of computing money) and the
resulting fiqures are aesthetically pleasing.

Suppose that one begins with a square of side cdc. The
first approximant (n = 0) is a single point at the cent~e of the

squa~e. To obtai
the original sc
solution fo~ th(
small squares .

r---

1
I

< - .

by three lines o :
then N and then 1
The process is ~~
more step. The
8.11.b, in which

r----

1
•

·-

·-
•

case n 1 to
o~iented. These f
length ad 1 2 **
fi~st E, then N a

ala? Since oxc
1 and to the
:e two defining

range. This
1er •programs•

might be by
:larations•, in
:ands• are of
s the fell owing

reala are not
arrinces of the
~ last line. It
r re la ted 11 is
ners and most
=lude multiple
that there are

through into
a the reader is

following it
.4.3.b] is thus

a plotting
containing

to and omov eo.
oordina tes of

s the pen and
ition to the

convergent
1 lines) will
ple we have
curve passing

ing that the
dence with the

curves.
exercise
and the

side cdc. The
centre of the

An ALGOL 68 Companion 103

square. To obtain the second approximant (n = 1), one divides
the original square into four squares each of side cd 1 2o. The
solution for the case n = 0 is then applied to each of the four
small squares. The four plots so obtained are then joinei

r--------------------------,
I
I
I
I •------~------•
I I
I I
I I
I ~
I I
I I
I I
I •------~------•
I
I
I
L-------------------------~
< - - - - - d - - - - - - >

Fig.8.11.a

by three lines of length cd 1 2 ** lc in
then N and then w. The resulting plot is
The process is re~ursive, but perhaps we
more step. The next approximant (n
8.11.b, in which the method is to apply

r--------------------------,

. ····~···------·

·------· ·------·
•

• ·------· ·------·

. ····~···------·

L--------------------------J
Fig.8.11.b

N

I
I

W--+--E
I
I
s

the directions first E,
shown in figure 8.11.a.
should follow it one
= 2) is shown in figure
the solution for the

N

I
I

W--t--E
I
I
s

case n to the four quarters, but scaled down ann re­
oriented. rhese four plots dre again joined by straight lines of
length cd 1 2 ** 2c and in the same directions as before, i. e .,
first E, then N and then W.

104 An ALGOL 68 Companion

To plot these approximants we consider some orientations of
the case n 1. A moment of thought will convince us that we
need only four orientations and these are shown in figure
8.11.c, together with a pair of truth values (the first relatei
to rotation about the NE diagonal and the second related to
rotation about the NW diagonal) and the direction of the second

..-----------1 .--------- - - 1 ,.-----------1 ,.------------,
I I I I I I I
I ·-----. I I ·--~---. I I • • I I ·------·
I I I I I I I I I
I 4 I I I I I I v
I I I I I I I I I
I ·-----· I I • • I I ·---(--• I I ·------·
I I I I I I I l_ __________ __J l_ _____ __ _ _ _ .J l_ _________ J

L----------.J

(true,true) N (false,true) E (true,false) W (false, false) s

Fig .8.11. c

of the three straight lines, eit her of which will determine one
of the four orientations. In the reach of DQ.2.2! p, qc, the
•formula• op * qo _plots an ap proximant with the orientation o(p,
q) o. and the •formula• cp + go plots a straight line of the
required length and with orientation c(p, q)o.

The program< 1) to plot an approximant follows. It first
reads the length cdc of the side of the square and the degree
one of the approximant. The first step is to calculate the
length of the line segments required and then to move the pen to
the starting position. The plot is then driven by the •formula•
c!;!!:!~ * !:f:.!:!~D.

¢Peano curve approximant¢ 0 11£1.!!2
QE +

((p
<!2.2.2! p, g)

= g I y I X

(.Qoo! p, g)

¢this plots a straight line of length d¢
+:= (q I d I -d) : plot)

* = ¢a recursive operation¢
(n > 0
I

)

n -: = 1 ; -.p * q ; -. p + q
p + -. q ; p * -.q ; n + : = 1

!£~! d ¢the side of the square¢,

p *q;p+q

.!!l!: n ¢the degree of the approximant¢
start here: read((d, n)) ;
d ;:= 2 ** n ¢length of connecting segments¢
x := y := d 1 2 ; move ¢to the starting point¢
¢now plot it¢ (!!!:!~ * !:.£!:!£)
~!l~tl

<1> From an algorithm of A. van Wijngaarden.

---------~----- - -
----------- -

p * q

8.12 Chinese rings

The next examp:
rings. The puzzle m<
with an elongated
are attached, by wi •
this is done in s1
have been removed, '
replaced) but not tl
the rings. The solu ·
and 2 is done in 1
we know how to remm
rings, then all a

rings, remove ring r

In the follow :
removes ok -
rings. The
removing all

DQ~1.!!l

i c r in~
•formuJ
the cnr

QE ~Q~!l = (~Q!; al,
(i!l.!: a : = a 1 ;

((a-:=b)>
I a Q~B 2 ; I

2E !:!£ = <!n! a 1 , t
(.!.!l!: a : = a 1 ;

((a-:= b))
I a !:!.E 1 ; a g

i!l!: n
start here
~!lQD

readi

8.1 Formulas

a) Is ex := yc a •fa
b) Is ox +:= yo a •f
c) What is the ordet

ex + - y - - - a
d) How many priority
e) Is ex :=: yc a •f
f) W bat is th e value

8.2 Priority dec

< 1 > D. 0. Shklarsky,
Problem Book, Freema

< 2 > This algorithm
to W. L. van der Poel.

ati ons of
s that we
n figure
t rela tei
lated to
he second

-------,
I

----• I
I
I
I

----• I
I _______ J

,false) s

r mine one
qc, the

.tion c(p,
ne of the

It first
.he degree
!late the
.he pen to
•formula•

.ength dt

' q

An ALG~L 68 Companion 10 5

8.12 Chinese rings

The next example is a solution to the puzzle of the Chinese
rings. The puzzle may be stated as follows. There are one rings
with an elongated D shaped rod passing through them; the rings
are attached, by wires through the D shaped rod, to a plate;
this is done in such a manner that, if the first em - 2c rings
have been removed, then the nmcth ring may be removed {or
replaced) but not the em-1oth rinq. The problem is to remove all
the rings. The solution is by induction <t>. Removal of rings 1
and 2 is done in the order "remove 2, remove 1". Assuming that
we know how to remove (and therefore to replace) less than orne
rings, then all cme rings are removed as follows: "remove m-2
rings, remove ring m, replace m-2 rings, remove m-1 rings".

In the
removes ek -
rings. The
removing all

following program< 2 > the •formula• ek QQ~~ ic
ic rings. The •formula• ek QE ic replaces ek ie
•formula• en QQ~~ Oe then drives the algorithm by
the one rings.

DQ~SI.!!!
QE ~Q~!! = (i~:!:. a 1, b)

(.!!!:!:. a : = a 1 ;
((a-:= b) > 0
1 a QQ.:!n 2; print(("remove", a))

QE .!!E = <!.n:!:. a 1, b)
(.!!!:!:. a : = a 1 ;

({a-:=b)>O

a l:!E 2

1 a QE 1 ; a ~OW.!! 2 ; print(("replace11
, a))

i!!.t n
start here
~!!QIJ

read (n) ; n QQ~~ 0

Review questions

8.1 Formulas

a) Is ex : = yo a •formula•?
b) Is ex +:= yc a •formula•
c) What is the order of elaboration of

ex + - 1 - - - ~!:!§ i QY~E 2c?

1))

a .!!E 2))

d) How many priority levels are there for •dyadic-operators•?
e) Is ex :=: yo a •formula•?
f) What is the value of c7 - 3 - 2c?

8.2 Priority declarations

< 1 > D.O. Shklarsky, N. N. Chentzov, I. 1'1. Yaglom, The USSR Olympiad
Problem Book, Freeman & Co. 196 2, pp 80-84.

<z> This algorithm is due to Sharon Dyck and in its final form
to W.L.van der Poel.

106 An ALGOL 68 Companion

a) Is Df?.£i2£i!:1 :=: = 1c a •priority-declaration•?
b) Is DE.fioritl +:= = Oc a •priority-declaration•?
c) Is D££i2£i!:1 !!! = 10c a •priority-declaration•?
d) Is D£fi2£i!:1 ? = 5c a •priority-declaration•?
e) Is Df?.£i2£i!:.J ? . ' I = 6c a •priority-declaration•?

8.3 Operation declarations

a) Is D2E. :=: = (~~l £~~1 a, b)
dec lara ti on•?

a = be an •operation-

b) Is DQE.!. = (: !:~!!~)c an •operation-declaration•?
c) Is D2E. * = (£~~1 a) !~~1 exp{a)c an

declaration•?
•operation-

d) Is DQE. Q£ = (~~f £~~1 X, y) £~! £~~1
y)can •operation-declaration•?

random > • 5 X

e) Declare an •operator• ccreatec so that ef create
same value as ccreate(f,-n)~-fR.10.5. 1.2.c):-----

na has the

8.4 Elaboration of operation declarations

a) What is the value possessed by e2c in the reach of c2~ 2 =
(£~21 a) int : ~2.!m£ ac?

b) Is DQ£ (E.~~1) ~~21 Q = randomc an •operation-declaration•?
c) What is the value of the •formula• c 11 +123 11 §i (11 +1000 11 §!

d)
2)c usinq the declaration of csic as in 8.3?

Is DQE. 2E. = (~£2£ .QQ21 a, b) Q2Ql : (a I !!~~
•operation-declaration•?

b) D

e) Is DQE. (£~~1. £~~1> £~~1 ~ = +c an •operation-declaration•?

8.5 Dyadic indications and operators

an

a) How many defining occurrences may be identified by an applied
occurrence of a •dyadic-indication•?

b) How many operator defining occurrences of c+c are in the
•standard-prelude•?

c) How many • priority-declarations • are in the •standard­
prelude•?

d) Where is the •priority-declaration• for the •operator• c?c in
line 3 of 10.5.3.i in the Report?

e) Is c::=c a •dyadic-indication•? - ,3

8.6 Identification of dyadic inftications

a) Is aQt.!Qri!.I + = 8, + = <Jc __. • priority- declaration •?
b) Can a proper •program• contain

c(E.f!ori!1 ~Q§ = 9 • x := ~Q§ x)e?
c) Why does the s r occur in the description of the repetitive

statement [R.9 2 a,b, 9.c]?
d) Are •dyadic-indications• subject to protection?
e) Ar~ •operators• subject to protection?

8.7 Identification of operators

a) In line 11.11. y of the Report, the •formula• cvalue of ec
1a occurs. Where is the defining occurrence--of its
•operator•?

b) In line 11.11.at o1
occurs. Where is i

c) In line 11. 11.1
occurs. Where is i

d) Where is the defin :
the •formula• c10'

e) Where is the defin~
•formula• c"a" <

8.8 Elaboration o1

a) What is the value 1
a > Oc?

b) What •closed-:::lau:
elaboration of thE
•declaration• abo 1

8. 9 Monadic opera ·

a) What is the value c
b) Is ex :=: yc a •fo1
c) Is ex + : = rea 1 : r i
d) Is areal +-reala a
e) What-is-the-value c

8.10 Related mode:

a) Are the modes a.e.fQ~
b) Are the modes aref
c) Are the modes --;;-1

QQ2l)c related?
d) Can the •declarer•

proper •program•?
e) Can a (2E. - = (unioJ

2.£? - = (.!!.!li.Q.!l (!~f
be contained in a

8.11 Peano curves

a) What would the •fo1
b) Write this algo l

procedures.
c) Translate the algol

8. 1 2 Chinese ring:

a) What is printed by
b) What is printed by
c) What is the purpo~
d) What is printed by
e) Rewrite this

dec lara ti ons•.

ion-

.ion-

X

; the

.Q =

•?
0" §i

c an

n•?

1plied

.n t be

1dard-

J?c in

titive

ec
>f its

An ALGOL 68 Companion 107

b) In line 11.11.at of the Report, the •formula• of onec
o=curs. Where is the defining occurrence of its •operator•?

c) In line 11.11.1 of the Report, the •formula• ca ::: zeroc
occurs. Where is the defining occurrence of its •operator•?

d) Where is the defining occurrence of the •operator• e~rc in
the •formula• e101 or bin 6c?

e) Where is the defining-occurrence of the •operator• e<e in the
•formula• c"a" < (§i£.!ng :)c?

8.8 Elaboration of formulas

a) what is the value possessed by ej:c in e~.E t ::; (!~21 a) Q~.Ql :
a > Oe?

b) What •closed-::lause• is elaborated as 'i result of the
elaboration of the •formula• e! XC in the reach of the
•declaration• above?

8.9 ~onadic operators

a) What is the value of c2 + - - + - 3c?
b) Is ex :=: ye a •formula•?
c) Is ex +:= £~~! : randome a •formula•?
d) Is areal + realc a •formula•?
e) What-is-the-value of e-1 .! 2 = -1 .! -2c?

8.10 Related modes

a) Are the modes aEfQf i~!c and cf~21c related?
b) Are the modes cf~f £~! .!Etc and er~f E£Qf in!c related?
c) Are the modes cEfQf ~ni~nC!n!, £~21lc and c~g!Qg(E£~f .!n!r

QQQl) c related?
d) Can the •declarer• D~!.!.QQ(ff.Qf f~!l:r E£.Qf)c be contained in a

proper •program•?
e) can c (.QE- = (~g!Qn(.QQQ.J:, !~! fh!£) a) in! : 2

QE - = (.!!Ei~n (f~f .!n!. f!!!!!l a) : 3 - (f!!~f : = "a")) o
be contained in a proper •program•?

8.11 Peano curves

a) What would the •formula• c!!!§~ + falseo 'iccomplish?
b) write this algorithm using four- mutually recursive

procedures.
c) Translate the algorith11 into FORTRAN.

8.12 Chinese rings

a) What is printed by c2 g~~! Oc?
b) What is printed by c3 Q.Q~Q Oc?
c) What is the purpose of the •declaration• c_!g! a := ale?
d) What is printed by c6 Q.Q!Q 2c?
e) Rewrite this algorithm without using •operation-

declarations•.

108 An ALGOL 68 Companion

9 The grammar

9.1 The syntactic elements

The graJRmar of ALGOL 68 using both "small-" an1
"large syntactic marks" (the ower and upper case letters of the
alphabet) [R.1.1.2.a]. Thu, •base• consists of four small
syntactic marks and •MODE• consists of four large syntactic
marks. A sequence of or more small syntactic marks is a
"protonotion" [R.1.1.2.b]. For example, •base• is a protonotion
and so is •streets-that-flow-like-a-tedious-argument•, though
the latter will not be found in the ALGOL 68 grammar. (The
presence of hyphens within protonotions may be ignored.)

The syntax of ALGOL 68 is a set of "production rules of the
strict language" ("production rules", for short). A production
rule is a protonotion followed by a colon followed by a list of
protonotions separated by commas and followed by a point. A
"notion" is a protonotion for which there is a production rule,
i.e., it lies to the left of the colon in some production rule.
For example, •integral denotation• is a notion because of the
existence of the production rule

•integral denotation : digit token sequence.•
[R.5.1.1. 1.a), but •base• is not, for there is no production
rule for it [R.8.6.0.1.a].

Any protonotion ending with •symbol•, e.g., •begin-symbol•,
is a "symbol".

A "direct production" of a notion is the part between the
colon and the point in a productio~ rule for that notion. Thus, A
•digit-token-sequence• (see above) 1s a direct production
•integral-denotation• and •insertion-option, radix, letter- • is
a direct production of •radix-mould• [R.5.5.2.h]. direct
production of a notion is therefore a list of protonot1ons (the
"members") separated by commas [R.1.1.2.b].

A direct production of a notion is also a "production" of
that notion. If in a production of a given notion, some notion
("productive member") is replaced by one of its productions,
then the result is also a production of the given notion. This
replacement process may be repeated as often as we please and,
in parsing, normally continues until all the notions have been
replaced and the result is a list of symbols. Then we have a
"terminal production" of the given notion. For example,

•digit one symbol, digit two symbol•
is a terminal production of the notion •integral-denotation•.

9. 2 Two levels

The syntax of ALGOL 68 is a set of production rules for
notions (the production rules of the strict language) as
described in section 9.1 above. only a few of the actual
production rules are explicitly given in the Report. The number
of production rules is infinite and the rule

•integral denotation : digit token sequence.•

[R.5.1.1.1.a] is c
required, fro• a
A typical producti

•reference to re
raference to r

It is obtai ned fro
•reference to !D

reference to 11
[R.8.3.1.1.a], by
by one of its te
the Report are
qualification. We
rules, so it is
rule" for the rule
Chapters 2 up t
some doubt about w
hyper-rule thus
language in that i
zero or more se1
language contains 1

Another set o;
Chapter 1 of the RE

•FORESE : ADIC f<
[R.1.2.4.c]. A met<
the fact that it h<
syntactic marks)
semicolons to the 1

recognize one, for
•DIGIT : DIGIT Sj

[R.3.D.3.d] is a l
we may derive the ~
rather simple way.

Thus, in summa
of rules

(i) the
(ii) the

The production ru
both the metarules
shall explain, by e

9.3 The metarules

A typical meta
•FORESE : ADIC fo

[R. ·1. 2. 4. c). It
metalanguage, whi~h

•FORESE ADIC fo
• FORESE cohesio.

and
• FORESE base. •

Thus a production
semicolons. The two
terminal (in the m•
formula• may be prot

ani
Jf the
small

:act ic
; is a
notion
though

(The

of the
uction
:;t of
int. A
rule,
rule.

f t be

uction

mbol•,

n the
Thus, A
on~
~ is
direct

(the

on" of
notion
tions,

This
e and,

been
have a

!S for
1e) as
actual
number

An ALGOL 68 Companion 109

[R.5.1.1.1.a] is one of them. The others may be obtained, when
required, fro• a two level grammar which we shall now describe.
A typical production rule of the strict language is

•reference to real assignation :
reference to real destination, becomes symbol, real source.•

It is obtained from the rule in the Report
•reference to M)DE assignation :

reference to MODE destination, becomes symbol, MODE source.•
[R.8.3.1. 1.a], by replacing the metanotion •MJDE• consistently
by one of its terminal productions, viz., •real•. The rules of
the Report are called simply "rules" without further
qualification. We shall be speaking of several different sets of
rules, so it is perhaps just as well to use the word "hyper­
rule" for the rules (such as the one just given) found in
Chapters 2 up to 8 of the Report, especially if there may be
some doubt about which set of rules we are referring to. A
hyper-rule thus differs from a production rule of the strict
language in that it may contain zero or more metanotions and
zero or more semicolons. A production rule of the strict
language contains no metanotions and no semicolons.

Another set of rules is the "metarules11 • These are "found in
Chapter 1 of the Report. A typical metar ul~is 1'\.eN\.~

•FORESE : ADIC formula ; cohesion ; base.• 1 J
[R.1.2.4.c]. A metarule may be distinguish from other rules by
the fact that it has one "metanotion 11 se q uence of large
syntactic marks) to the left of the clan and zero or more
semicolons to the right. However this is not sufficient to
recognize one, for

•DIGIT : DIGIT symbol.•
[R.3.0.3.d] is a hyper-rule, not a metarule. From the metarules
we may derive the production rules of the metalanguage in a
rather simple way.

Thus, in summary, the ALGOL 68 grammar consists of two sets
of rules

(i) the metarules (in Chapter 1) and
(ii) the hyper-rules (in Chapters 2 up to 8).

The production rules for the strict language are derived from
both the metarules and the hyper-rules by a process which we
shall explain, by example, in section 9.5.

9.3 The metarules

A typical metarule is
•FORESE : ADIC formula ; cohesion ; base.•

[R.~.2.4.c]. It provides three production rules for the
metalanguage, which are

•FORESE ADIC formula.•
•FORESE cohesion.•

and
•FORESE base.•

Thus a production rule of the metalanguage contains no
semicolons. The two direct productions •cohesion• and •base• 3re
terminal (in the metalanguage), but the direct production •ADIC
formula• may be produced further by using the metarule for

110 An ALGOL 68 Companion

•ADIC• [R. 1.2.4.d]. The terminal productions of metanoticns are
always protonotions.

The words used for the metanotions are usually chosen in
such a way that they help to convey a meaning. Coined words,
such as •FORESE• are often mnemonic. Thus, •FORESE• is made up
from

formula
and FEAT from

coh~sion

firm w~~k soft
The reader will find many others, similarly coined and usually
the mnemonic is glaringly apparent. It is useful to remember
that every metanotion ending with •ETY• always has •EMPTY• as
one of its (not necessarily direct) productions.

The metanotion •ALPHA• is of interest because it has all
the letters of the alphabet (small syntactic marks [R.1.1.2.a])
as direct produ=tions. If more are required (perhaps in
languages other than English), then it is permitted to add them
(see 1.1.4 Step 2 in the Report).

Another metarule of significance is
•EMPTY : .•

(R.1.2.1.i], from which we see that the metanotion •EMPTY•, if
it appears in one of the hyper-rules, or in those derived from
them, may be consistently deleted.

Two metarules to watch are
•CLOSED : closed ; collateral ; conditional.•

fR.1.2.3.r] and
· •LIST: list ; sequence.•
fR.1.2.5.h], where a distinction must be made between the
metanotion, which appears on the left of the rule, and the first
production of each, which is a protonotion. In speech this
distinction will be lost.

Another interesting metarule is ~~
•NOTION : ALPHA ; NOTION, ALPHA~•

fR.1.2.5.f]. Roughly speaking, anY, ing is a terminal productic;m
of •NOTION•. More precisely, any sequence of small syntact1=
marks (the letters of the alphabet as used in the syntax) is a
terminal production of •NOTION•. This is so because the
productions of •ALPHA• are the small syntactic marks. This fact
is used heavily in the rules of section 3.0.1 of the Report.

Joe might also wonder about the metarules
•LMODE MODE.•

and
• RMODE MODE. •

[R.1.2.2.j,k]. The mystery may be resolved by examining the rule
for •formulas• [R. 8. 4. 1. b], where the mode of the left
•operand•, that of the right •operand• and that of the result
delivered by the operation all appear in the same hyper-rule.
These modes may be different, so it would not do to use the
metanotion •MODE• for all three of them. Other instances of this
same phenomenon are suggested by the metarule

•LOSETY : LKOODSE'
[R.1.2.2.o], which
declarers• [B.7.1.1

•ROWWSETY : ROWSE
[R. 1. 2. 2. d) used
where •ROWWSETY• =o
the •indexer• and
which are •trimmers

The two rules
•LFIELDSETY FIE

and
•RFIELDSETY and

[R.1.2.2.q,r) are a
rule for •selection

There are two
of the metanotion i

•COMPLEX : struct
and real field

(R.1.2.2.s] and
•LENGTH : letter

fR.1.2.2.v]. This
metanotions in some
shortening the rule

9.4 The hyper-rules

A qood intra
section 3.0.1 of
several rules whic
extensively elsewhe

•NOTION option :
[R.3.0.1.b]. The fi
strict language, f
as follows:

• NOTION option
and

•NOTION option
As a next step we 11

one of its ter
substitute •integra
• EI'IPTI •. This wil
strict language. Tl

• in te gr al part or
and

•integral part Of

Note that • j
suggest. i.e., ej
part•. This is userl

•variable point r
integral part ~

[R.5.1.2.1.b]. Exaa
notions in ALGOL
(protonotions) u~

ticns are

lOS€n in
~d words,

made up

usually
remember

e!MPTY• as

has all
I. 1 • 2. a))
1aps in
add them

1TY•, if
_ved from

reen the
:he first
!ech this

eduction
:yntacti::
.ax) is a
tse the
his fact
•ort.

the rule
e left
e result
•er-rule.
' use the
: of this

An lLGOL 68 coapanion 111

•LOS!TI : LMOODSETY. •
[R.1.2.2.o], which is used in the hyper-rule for •united­
declarers• [B.7.1.1.ee,ff], and by

•ROWiSETY : ROVSETY.•
[R.1.2.2.d] used in the hyper-rule for •slices• [R.8.6.1.1.a],
where •ROWVSETY• counts the number of •row-of•s not involved in
the •indexer• and •ROWSETY• counts the number of •trimscripts•
which are •trimmers•.

The two rules
•LFIELDSETY FIELDS and EMPTY.•

and
•RFIELDSETY: and FIELDS EMPTY.•

[R.1.2.2.q,r) are another pair which play a similar role in the
rule for •selections• [R.8.5.2.1.a].

There are two metarules in which the only
of the metanotion is a protonotion. They are

•COMPLEX : structured with real field letter
and real field letter i letter m•

direct production

r letter e

[R.1.2.2.s) and
1 letter o letter n letter g.• •LENGTH : letter

fR.1.2.2.v]. This
metanotions in some
shortening the rule

means that the presence of one of these
hyper-rule is merely for the convenience of
and plays no other grammatical role.

9.4 The hyper-rules

A good introduction to the hyper-rules is to be
section 3.0.1 of the Report, where are collected
several rules which should be mastered early, for they
extensively elsewhere. A typical example is

•NOTION option : NOTION ; EMPTY.•

found in
together
are use1

[R.3.0.1.b]. The first step in deriving production rules of the
strict language, from the hyper-rules, is to make two new rules
as follows:

•HOTION option: NOTION.•
and

•NOTION option EMPTY. •
As a next step we may replace each metanotion consistently by
one of its terminal productions. For example, we might
substitute •integral-part• for •NOTION• and nothing at all for
•EMPTY•. This will now give us two production rules of the
strict language. They are

•integral part option
and

•integral part option

integra 1 part. •

..
Note that •integral-part-option• means what the words

suggest. i.e., either the presence or absence of an •integral­
part•. This is used with good effect in the rule

•variable point numeral :
integral part option, fractional part.•

[R.5.1.2.1.b). Examples are c3.45c and c.45c.
notions in ALGOL 68 are similarly chosen so
(protonotions) used give some suggestion of

Many of the
that the words
the semanti::

I •

I

112 An ALGOL 68 Companion

elaboration.

The pair of hyper- rules
•N OTION pack : open symbol, NOTION, clos e symbol. •

and
•NOTION package : begin symbol, MOTION , end symbol.•

f R.1.0.1.h,i] are also us e d in several places elsewhere. Thus,
if oxo is a certain • n •, t h e n o (x)o is an •n-pack• and o~~gin x
~g Q o is an •n- package•.

The hyper-rule
•NOTION LIST proper : NOTION , LIS T separ a tor, NOTION LIST.•

fR.3 . 0.1. g] ensures that at lea s t two •NCTION•s will appear in
the production. It is used, for example, in the rule for
•collateral-declarations• [R.6.2 .1.a]

•collate ral dec la ration : un i ta ry de c laration list proper•
me anin g that, for e xample, of~~1 x , ~ni io is a •collateral­
d eclaration• but o~~~1 xo i s not .

The hyper-rules
•NOTION LIS T :

chain of NOTIO Ns separated b y LIST separators.•
and

•chain of NOTIONs separated by SEPARATORs : NOTION
NOTION, SEPARATOR,

chain of NOTIONs
[R. 3 • 0 • 1 • d, c] a r e u sed

sepa r a ted by SEPARATORs .•
to desc ribe such objects as

o123 o
which is a •cha i n-of-digit- t ok ens-separated-b y-EMPTYs•,

o l , 2, 3o ,
wbic h i s
symbol s •,

a •cha i n-of-strong- in t egral- uni t s-se Fa rated- by-comma­
a nd

D 1 ; 2 ;)D

whic h is a •chain-of - s t rong-integ r al- units- separated-by-go-on­
sym bol s •. These are used principa l l y in the rules for •seri~l­

clauses • [R.6.1.1], but in ot her places also.

9 .5 A sim ple language

We shall now use t his kind of g rammar to describe an
intere s ti ng but trivial language. By t h i s small example we shall
b e a ble to see the complet e gram mar in a few lines. There are
o nl y three •symbols•, two h yp e r-rules and two metarules. Thus it
will be e asier to get an overa ll v iew of how the grammar works.

Th e langua ge we choos e i s tha t i n which the only sentence s
(or progr a ms) ar e

ox yz o, oxxyy zzo, oxx xy y yzzzc •••
Pe rhap s we could say that the f ol lowing would c ause an ALGOL 68
computer to print sentences of th i s language until it runs out
of tim e or memory space.

a~~~!n ~i!!TI9 a, b, c :
!!Q print ((a +:= "x") + (b +:= "Y") + (c +:= "z"))
en de

Th e reason that this language is of interest is that it is known
fH) t hat i t c a nnot be described by a context-free grammar such

as that used for

are
The three SJ

•lette
•lette
•lette

This corresponds
The three hyper-r

(i) •sentence
NUMBER 1

(ii) •NUMBER pl
(iii) •one L ETTE

These three rules
Chapters 2 up
ex presses the req1
of the different :
used to inter pre1
one by one. Rule
3.0.2.b and 3.0 .
with 7.1.1.q of tl
is being counted.
requirement of l
•symbol• are te1
requirement we cou
instead .of three.

The two meta r
(I) •LETTER : le
(II} •NU MBER : on

These two metarule
1.2 of the Report
may be able, with
It is similar t
metanotion •ALPHA•
we should need sev '
is essential. In i
productions of t .
one•, •one- plus-oJ
somewhat similar
metanotion •ROWS•

We shall now 1
some of the produc
by the above grana
1 • 1. 4 and 1 • 1. 5 c
production rules
minilanguage above)

If we substitu
viz., •one•, forth
new rule

(a) •sentence : on
The direct produc
terminal, since it

~. Thus,
!~!!!.!! X

:sr .•
>pear in
1le for

>er•
lateral-

r-comma-

r-go-on­
•seri:t.l-

cribe an
we shall
ere are
Thus it
works.

entences

LGOL 68
runs out

is known
ar such

An ALGOL 68 companion 113

as that used for the syntax of ALGOL 60.

The three symbols of the language and their representations
are

symbol
•letter x symbol•
•letter y symbol•

representation
oxo
oyo

•letter z symbol• ozo
This corresponds to the whole of section 3.1.1 of the Report.
The three hyper-rules are
(~ •sentence :

NUMBER letter x, NUMBER letter y, NUMBER letter z.•
(ii) •NUMBER plus one LETTER : NUMBER LETTER, one LETrER.•
(iii) •one LETTER : LETTER symbol. •

These three rules correspond to all the hyper-rules found in
Chapters 2 up to and including 8 of the Report. Rule (i)
expresses the requirement that the number of occurrences of each
of the different letters should be the same. Rule (ii) will be
used to interpret this number, i.e., actually to count them out
one by one. Rule (ii~ is almost the same as the hyper-rules
3.0.2.b and 3.0.3.d of the Report. Rule (ii) might be compared
with 7.1.1.q of the Report, where the multiplicity of a •rower•
is being counted. Rule (iii) is present in order to satisfy the
requirement of ALGOL 68 that only protonotions ending in
•symbol• are terminal productions of the grammar. Without this
requirement we could describe the language with two hyper-rules
instead .of three.

The two metarules are
(I) •LETTER : letter x ; letter y ; letter z.•
(II} •NU MBER : one ; NUMBER plus one. •

These two rnetarules correspond to the metarules found in section
1.2 of the Report. The first metarule, (I), is there so that we
may be able, with one word, to speak of any one of the letters.
It is similar to the metarule 1.2.1.t of the Report for the
metanotion •ALPHA•. We could do without metarule (I), but then
we should need seven hyper-rules instead of three. Metarule (II)
is essential. In it, •NUMBER• is used as a counter. The terminal
productions of the meta notion •NUMBER• are •one•, •one- plus­
one•, •one-plus-one-plus-one• and so on. The metarule is
somewhat similar to the metarule of the Report fer the
metanotion •ROWS• [R.1.2.2.b].

We shall now go through, in detail, the process of finding
some of the production rules of the strict language, as defined
by the above grammar. This process is described in sections
1.1.4 and 1.1.5 of the Report. Since there are infinitely many
production rules of the strict language (even for the
minilanguage above), we cannot give them all here.

If we substitute the first terminal production of •NUMBER•,
viz., •one•, for that metanotion, in hyper-rule (i), it yields a
new rule

(a) •sentence : one letter x, one letter y, one letter z.•
The direct production of •sentence• in this new rule is not
terminal, since it contains a notion which does not ena with

1 14 An ALGOL 68 Companion

•symbol•. To remedy this we use hyper-rule (iii) and, replacing
•LETTER• by each one of its terminal productions in tu~ n, we
obtain

(b) •one letter x
(c) •one letter y

and

letter x symbol. •
letter y symbol.•

(d) •one letter z letter z symbol. •
The rules (a), (b), (c) and (d) are each production rules of the
strict language. If now, in the right hand side of (a), we make
u s e of the productions in (b) , (c) and (d), then we obtain that

•letter x symbol, letter y symbol, letter z symbol•
is a terminal production of the notion •sentence•. This means
that we may speak of cxyzo as a •sentence• in the representation
lanquaqe.

We now take another termina l production of •NUMBER•, viz.,
•on e - p lus-one•, and substitute tha t i n the hyper-rule (i). It
yield s

(e) •sentence : one plus one l e tte r x,
one plus one letter y, o n e plus one l e tter z.•

Also, in (ii), we replace •NUMBER• by •one•. (Note that this is
the first use of hyper-rule (ii).) This gives

(f) •one plus one letter x one lette r x, one letter x. •
(q) •one plus one letter y one letter y, one letter y. •

ann
(h) •one plus one letter z one letter z, one l e tter z. •

Now, combining production rules (e), (f), (g) and (h) with
production rules (b), (c) and (d) . obtained a bove, we have that
the object

•letter x symbol, letter x sy mbol, letter y symbol,
l e tter y symbol, letter z symbol, letter z symbo l •

i s also a terminal product i o n of •sentence•. In

sentenc e

r---------------------+----------------------,
one-plus-one- one- plu s-one- one-plus-one-

letter-x let t e r-y letter-z
I I I

r----L-----, r---~-----, r----~----,
one- one- one- one- one- one-

the

letter-x letter-x letter-y letter-y letter-z letter-z
I I

letter-x- letter-x­
symbo 1 symbol

I I
ox X

I I
letter-y- letter-y-
symbol symbol

I I
y y

Fi g .9.5

I I
letter-z- letter-z-

symbol symbol
I I
z zc

representation language we may therefore now say that
cxxyyzzo

is a •sentence• of the strict language. A sketch of the parse of
this •sentence• is shown in figure 9.5. Perhaps we have now done
enough of this to suggest that it is easy to show that
oxxxyyyzzzo is a •sentence•. A crucial new rule in this process

is
•one plus one plus

one plus one LET
moreover, the proc
language should be c

It will also be
described more conci

(I) L x y ;
(II) N : ; N p.

and if we drop the r
• symbol• by agree in
then even more conci

(I) L : X ; y ;
(II) N : ; N p.

For the student of f
is by nature an
concise expression.
language we can affo
are not algebraist
understand them.

9. 6 How to read the

Row do we reall
considering? How d
perform, in our min d
their terminal pro
hyper-rules say? The
have the experienc
least once. With thi
mathematician who fi
theorem every time
normally to check th
and then to remember

For us, the met
theorems and the
the terminal product
graamar of the minil
only remember that
•letter-x-symbol•, •
that the terminal F
one•, • o ne-plus-one­
at hand, the comF
reading the three by

(i) •sentence :
HUMBER lett e r

(ii) •NUMBER plus
(iii) · •one LETTER :

The same methoo
metarules should t
terminal production!
be known. With this

placing
,:; n, we

; of the
we make

. n th'i t

mea ns
:!ntat ion

•, viz.,
(i). It

this i s

. .
•

..
:h) wi th
ave that

' I

In

; -on e­
r -2

- --,

the

one­
letter-z

I
letter-z­

s-ymbol
I
20

l pa rse of
! now done
show that

> process

An ALGOL 68 companion 115

is
•one plus one plus one LETTER :

one plus one LETTER, one LETTER.•
moreover, the process for finding more •sentences• of the
language should be clear.

It will also be obvious that the same language might be
described more concisely by the grammar

(I) L x y ; z. (i) s N x, N y, N z.
(II) N : ; N p. (ii) N p L : N L, L •

(iii) L L symbol.
and if we drop the requirement that every terminal must end with
•symbol• by agreeing that •x, y• and •z• are already terminals,
then even more concisely by

(I) L : X ; y ; z. (i) s : N x, N y, N z.
(11) N : ; M p. (ii) N p L : N L, L.

For the student of formal grammars this is more natural, for he
is by nature a n a lgebr a ist who is dedicated to the cult of
concise expression. In a description of a practical programming
language we can afford to be more verbose so that even those who
are not algebraists can read the rules and think that they
understand them •

9.6 How to read the grammar

How do we really use a grammar such as the one we are
considering? How do we read it? Is it necessary always to
perform, in our minds, the replacement of the metanotions by
their terminal productions before we can understand what the
hyper-rules say? The answer to this is probably that we should
have the experience of making these detailed substitutions at
least once. With this experience we may then proceed as does the
mathematician who finds that it is unnecessary to prove a
theorem every time that he uses its result. His method is
normally to check through the proof of the theorem at lea s t once
and then to remember its hypothesis and its conclusion.

For us, the metalanguage plays the role of a body of
theorems and the results we need to remember are the shape of
the terminal productions of the metanotions. For example, in the
grammar of the minilanguage given in the last section, we need
only remember that the terminal productions of •LETTER• are
•letter-x-symbol•, •letter-y-symbol• and •letter-z-symbol• and
that the terminal productions of •NUMBER• are •one •, •one-plus­
one •, •on e-plus-one-plus-one• and so on. With this information
at hand, th e comple te language may be comprehended merely by
reading the three hyper-rules

(i) •se nt e nce :
HUMBER letter x, NUMBER letter y, NUMBER letter z.•

(ii) •NUMBER plus one LETlER : NUMBER LETTER, one LETTER.•
(iii) , •one LETTER : LETTER symbol. •

The same method of comprehension applies to ALGOL 68. The
metarules should be well studied first and the shape of the
terminal productions (at least of the commonly used ones) should
be known. With this knowledge we can then read the hyper-rules

11 6 An ALGOL 68 Companion

and comprehend their meaning.

fhe most im portant metanotion in ALGOL 68 is •MODE•. For
this reason its terminal productions should be well known before
trying to read the hyper- rules. A chart is sometimes a helpful
aid in understan1ing the metalanguage, though others may prefer
to rely upon the alphabetic listing of the metarules which comes
as a loose page with the Report. If you have not already done

MODE
I

r-------------L- -----,
I I
MOOD UNIT ED

I I
r-----------r-J r---------J
I I
TYPE STO WF.D

I
union-of-LMOODS-MOOD-mode

I I I
r--------1 r-----------4-------- -- -, L----r------,
I I I I I I
format 1 s tructured-with-FIELDS row-of-MODE LMOODS-LMOOD

I I I
r------T-4-----------------, L----r----------, r------J
I I I I I
PLAIN reference-to-MODE PROCEDURE FIELDS-and-FIELD

I
MOOD-and

I I
r---L---r--,
I I I
INTREAL I character

r--------J
I
procedure-PARAMETY-MOID

I I
r---------------~--J r---L--,

I
r--J
I
MODE-field-TAG

I
r------~

I I
r--r--J I
I I I
I nEAL boolean

I I
with-PARAMETERS EMPTY

I I
MCDE void

I I
LETTER I

I I
I L---,
I I
INTEGRAL LONGSETY-real

I I

I
r ------.!.-------,
I I
PARAMETERS-and-PARAMETER

I
L-~-----------, r-------J

I I I

I
r-----------~

I I
TAG-LETTER I

I
r-------J
I I

LONGSETY-integral long-LONGSETY EMPTY MODE-parameter r AG-D!GIT

Fig.9.6

so, it is a good idea to take this loose page and arrange it so
that it is attached to your c o py as a fold-out page in such a
way that it may be in view no matter what page of the Report you
hav e o pen. For those who like charts, we reproduce, in figure
9.6, an abbreviated syntactic chart for the metanotion •MODE•,
in which •LETTER• and •DIGIT• are the only metanotions not
produced. Whichever method you prefer, ("people who like this
sort of thing will find that this is the sort of thing they
like") a careful study of the metalanguage is essential to the
comprehension of the hyper-rules and thus of the grammar of the
lan g uage.

9.7 The indicator~

A "h ypernot i o
protonotions, e .g.
used in sect ion 9 .
by a colo n, f oll
semicolons and;or

• stro ng COERCEHIJ
strongly ADAPT

[R.8.2.0.1.d]. If ,
metanotions is c

strc

stro1
---T·

I
I
I
I
I
I
I
I
I

-.L.

STI

metanotion, then
protonotion. Let
hypernotion i e. g.
terminal offsho
•INTREAL base• is
the grammar easil
hypernotions have

•
and

have at least one
•str

That this is sc

1

For
fore
pful
efer
ames
done

I
LMOOD

I
·--- J

lD-and

l d- Tri G
I

-----~
I

rER I
I

----~
I

TER I
I

·--- --J

; -DIG IT

€ it so
s uch a
art you

figure
•MOD E: •,
ons not

.e this

.ng they
to the

: of the

An ALGOL 68 Companion 117

9.7 The indicators

A "hypernotion" [R. 1.3] is a sequence of metanotions and;or
protonotions, e.g., ·~ODE field TAG•. A hyper-rule (in the sense
used in section 9.2 above) is therefore a bypernotion followe3
by a colon, followed by zero or more hypernotions separated by
semicolons and;or commas and followed by a point; e.g.,

•strong COERCEHD : COERCEND ;
strongly ADAPTED to COERCEND.•

[R.8.2.0.1.d]. If, in a given hypernotion, one or more of its
metanotions is consistently replaced by a production of that

strongly-ADAPTED-to-COERCEND
--r---

1
I
I
I
I

ADJUSrED
I
I
I
I
I
I

----r---
·-----1

MOlD FORI'!
I I

~ODE I
I I

~OOD I
I I

TYPE FORESE
I I

PLAIN I
I I

INTREAL I
---L------ ~-- --L

strongly-deprocedured-to-real-base
---T--

1
I
I
I
I
I
I
I
I

-r---
INTR EA L

I
PLAIN

I
TYPE

I
MOOD

I
MODE

--~

I
I
I
I

FORESE
I
I
I
I

__ .,L__ ~- _ _i_

STIRMly-deprocedured-to-eOID-FOR~

Fig.9.7

metanotion, then we have another hyper- notion, or perhaps a
protonotion. Let us call this an "offshoot" of the given
bypernotion; e.g., •strongly deprocedured to real base• is a
terminal offshoot of •strongly ADAPTED to COERCEND•, and
•INTBEAL base• is an offshoot of •MODE base•. In order to read
the grammar easily, we frequently need to know whether two given
hypernotions have a common offshoot. For example,

•strongly ADAPTED to COERC!ND•
and

•STIRMly deprocedured to MOID FORM•
have at least one common offshoot, say

•strongly deprocedured to real base•
That this is so can be seen by examining figure 9.7, where the

118 An ALGOL 68 Companion

steps in obtaining this offshoot are shown. In fact, examination
of this same figure shows that there are infinitely many common
terminal offshoots of these two hypernotions. They are all
offshoots of a "m~ximal common offshoot", the hypernotion

•strongly deprocedured to MOID FORM•
It is the existen=e of some maximal common offshoot, rather than
that of any particular common terminal offshoot which becomes
the point of focus when looking at two such hypernotions. Note
that because of the requirement of consistent replacement, some
offshoots may be too restrictive to be useful, e.g., the
offshoot •procedure-with-~ODE-~rameter-and-MODE-parameter-MODE­
PRIORITY-operator• of the hypernotion •procedure-with-LMODE­
parameter-and-RMODE-parameter-MOID-PRIORITY-operator•
[R.4.3.1.b].

In the process of parsing, given some hypernotion to the
right of the colon in a hyper-rule, we need to know how to finj
a hyper-rule whose hypernotion to the left of the colon has a
common offshoot with the given one. To help us in this search
there are "indicators" [R.1.3]. The example considered above
will actually occur in reading the Report. :onsider the two
hyper-rules [R.8.2.0.1.d]

•strong COERCEND : COERCEND ;
strongly ADAPTED to CCERCEND {822a}.•

and [R.8.2.2.1.a]
•STIRMly deprocedured to MOlD FORM{820d}

procedure MOID FORM ;
STIR~ly FITTED to procedure MOlD FORM.•

We have copied these two hyper-rules from the Report, together
with two of the indicators, "822a" and "820d 11 • In order to
conserve space within the hyper-rules of the Report, the
indicators have been compressed, according to obvious
conventions [R.1.3]. If we expan d them again, i.e., 822a becomes
8.2.2. l.a and 820d becomes 8.2.0.1.d, then we see that the
hypernotion on the right of the hyper-rule 8.2.0.1.d points to
the hyper-rule 8.2.2.1.a and the hypernotion on the left of
hyper-rule 8.2.2.1.a points to hyper-rule 8.2.0.1.d. We are ~ bus
aided, in both directions, in finding hypernotions with common
offshoots.

The indicators are clustered rather thickly in the hyper­
rules concerning coercion, in section 8.2 of the Report. Perhaps
this is evidence that it is in this section that the power of
the two-level grammar is being used to its fullest. A similar,
or perhaps greater, clustering of indicators might have been
found in section 3.0.1 of the Report, dealing with chains,
lists, sequences and options, but these have not been included
in the Report since their great number would have rendered their
presence of little value. Instead, the indicators have bypassed
this section, which the reader is therefore advised to become
familiar with at an early stage.

Sometimes a hyphen, "-", appears after
for a hypernotion. This tells us that there
offshoot of the given hypernotion which is
it is not an offshoot of any hypernotion (on

a set of indicators
is at least one

a "dead end", i.e.,
the other side of

the . colon) in ar
hyper-rule for sti
this case it is tl

•stronc
is a dead end.]
left of any hypex
• notion •.

9.1 The s yntac

a) Is •MODE base•
b) Is •all-mimsy-w
c) Is •cast• a not
d) Is •MABEL ident
e) Is •long-integr

9.2 The metaru

a) How many prod
for ALGOL 68?

b) How many produc
explicitly in

c) How many prod
derived from 7

d) How many produ=
derived from 6

e) What are the te

9.3 The metaru

a) Is •LETTER : LE
b) How many produ

from 1.2.1.r o
c) Is •MOHSTOWED :

metalanguage?
d) Are the termi

productions of
e) Is •FIELD• a pr

9.4 The hyper-

a) Is •P ARAMETER :
b) Is •digit-toke

proper•?
C) Is D () D a •s

some mode?
d) What production

.Q! zo?
e) What production

9.5 A simple 1

.mination
common

are all
•D

.her than
becomes

•ns. Note
1t, some
,.g., the
er-MODE­
h-LMODE-

•n to the
to find

.on has a
sea r:::h

ed above
the two

together
•r der to
•rt, the

obvious
becomes

that the
•i nts to
! left of
are ·:bus

common

1e hyper-
Perh:i ps

1ower of
similar,

1ve been
1 chains,
includ e d

:ed their
bypassed

become

1dica tors
~ast one
i", i.e.,
side of

An ALGOL 68 Coapanion 119

the colon) in any hyper-rule. An example of this occurs in the
hyper-rule for strong coercion quoted above [R.8.2.0. 1.d]. In
this case it is there because, e.g.,

•strongly-widened-to-procedure-real-base•
is a dead end. It is not an offshoot of any hypernotion on the
left of any hyper-rule [R.8.2.5.1]; in fact, it is not a
•notion •.

Review questions

9.1 The syntactic elements

a) Is •MODE base• a protonoticn?
b) Is •all-mimsy-were-the-borogroves• a protonotion?
c) Is •cast• a notion?
d) Is •MABEL identifier• a notion [R.4.4.1.b]?
e) Is •long-integral-denotation• a notion?

9.2 The metarules

a) How many production
for ALGOL 68?

rules of the strict language are there

b) How many production rules of
explicitly in section 6.1.1

c) How many production rules
derived from 7.1.1.s?

the strict language are listed
of the Report?
of the strict language can be

d) How many produ:::tion rules of the strict language
derived from 6.1.1.d?

e) What are the terminal productions of •VICrAL•?

9.3 The metarules

a) Is •LETTER : LETTER symbol.• a metarule?
b) How many production rules of the metalanguage can be

from 1.2.1.r of the Report?
c) Is •NO!iSTOWED : TYPE ; UNITED. • a production rule

metalanguage?
d) Are the terminal productions of • NONPROC• also

productions of •MODE•?
e) Is •FIELD• a production of •I'WDE•?

9.4 The hyper-rules

a) Is •PARAMETER : MODE parameter.• a hyper-rule?

can be

derived

of the

terminal

b) Is •digit-token• a production of •digit-token-sequence­
proper•?

c) Is c()c a •strong-closed-[m]-clause•, where (m] represents
some mode?

d) What production of •LFIELDSETY• would be used in parsing cim
of zc?

e) What production of •LMODE• is used in parsing ex + yo?

9.5 A simple language

I

I
I! ,,

:,

j

/
120 An ALGOL 68 Companion

a) Define, by means of a two - level grammar, the language whose
sentences are printed by

o~~gi~ §!!i~g a, b := "y", c ;
Q.Q print((a +:= "x") + (b +:= "Y") + (c +:= "zz"))
endc.

b) Define,-by means of a two-level grammar, the language whose
sentences are printed by

c~~gi~ §!!i~g a, b, c
Q.Q (print (a+ b +c) (a + : = "x" , b +: = " y", c + : = " z"))
g~QD.

c) Rewrite the grammar of the language considered in 9.5 using
two metarules and two hyper-rules and yet requiring that
terminals end in •symbol•.

a)
b)

c)

d)
e)

a)

b)

c)

d)

e)

9.6 How to read the grammar

Is •real-format• a terminal production of ·~ODE•?
Is •reference-to-procedure-row-of-character• a terminal
production of •MODE•?

Is •long-structured-with-real-field-letter-1• a terminal
production of •MODE•?

Is •procedure• a terminal production of •MODE•?
Is •procedure-with-real-parameter-real• a terminal production
of •NONPROC• [R.1.2.2.h)?

9.7 The indicators

Why is there
Report?

a dead end in •MOID FORM• in 8.2.3.1.a of the

What is a maximal common offshoot of •virtual NONSTOiED
declarer• and •VICTAL MODE declarer• (R.7.1.1.a,n]?

What is a maximal common offshoot of •firmly ADJUSTED to
CJERCEND• ani •STIRMly dereferenced to MODE FORM•
fR.8.2.2.1].?

What is a maximal common offshoot of •STIRMly rowed to MOID
FORM• and •strongly rowed to REFETY row of MODE FORM•
[R. 8. 2. 6. 1]?

What is a maximal common offshoot of •SORTly ADAPTED to
CJERCEND• and •STIRMly united to MOit FORM• (R.8.2.0.1,
8. 2. 3. 1]?

•

10 ~ode declarations

10.1 Syntax

A typical • mode
cmode co

w hie h, by virtue of
cone ise ly as

cstr
This •mode-declarati
of the •standard-p
programmer may assum
made a similar •decl

.----------
1

mode-symbol mode-
l

_ _J__

D!J!Q.Qg

shown in fiqure 10. 1
•mode declaration

equals symbol, c
fR.7.2.1.a]. The b
mode of the •actual·
the •mode-indicatior

It is perhaps 1

•MODE mode indi~a 1

[R. 4. 2. 1. b] and tc
own •indicant• more
subjected to the
expected that most
as c~~£o and c!J!j~c,
but are in bold f ;
standards• are cstr
.Q!!~§r]:.Q.Qg !.Q~g- ·
that one IDdY write

or

edch of which is le

10.2 Development

One purpose of
shorthand whereby t
uses some complic
out in full each ti
a numerical analyst
wish to use the con

whose

whose

:"))

using
that

minal

minal

1ction

1f the

TOllED

'ED to
FORI'!•

I I'IOID
FORI'!•

'ED to
!.0.1,

An ALGOL 68 Companion 1 21

10 "ode declarations

10.1 Syntax

A typical •mode-declaration• is
c~ggg ~2~£1 = ~ti~~!(fg~1 re, Ig!l im)c

which, by virtue of extensions [R.9.2.b,c), may be written more
cone ise ly as

c§!fY~1 £2!£1 = (f~~1 re, im) c
This •mode-declaration• is, in fact, one of the •declarations•
of the •standard-prelude• [R.10. 2. 7. a), which means that the
programmer may assume that he is within its reach (unless he has
made a similar •declaration• himself). A simplified parse is

mode- declaration
I

r---------------r------~--~-----------------,
I I I . I

mode-symbol mode-indication equals-symbol actual-declarer
I I I I

--~-- .J. --------------~---------
£2!£1 = §!I~£!(fg~1 re, I~~.! im)c

Pig. 10. 1

shown in fiqure 10.1. The hyper-rule for a •mode-declaration•
•mode declaration : mode symbol, MODE mode indication,

equals symbol, actual MODE declarer.•
[R.7.2.1.a]. The two occurrences of •MODE• here ensure that
mode of the •actual-declarer• on the right is then envelofed
the •mode-indication• on the left.

It is perhaps worth while to look at the hyper-rule
•MODE mode indi~ation : mode standard ; indicant.•

is

the
by

[R.4.2.1.b] and to realise that the programmer may choose his
own •indicant• more or less at will [R. 1. 1.5.b]. He is, however,
subjected to the restrictions of his installation. It is
expected that most implementations will permit such •indicants•
as cabco and cm12c, i.e., objects which look like identifiers
but -are in bold face (or underlined). Objects which are •mode­
standards• are c§!f.!!!g, §g!~· :H!~, £2~£1, !2!.!:§, .Qy!.g~, 12!!g
QI!~§, 12!!g 12!!9 .Qi.!:§, 12!!9 !ggg _!Qgg £2~E!c, etc. This means
that one may write

or
c~2gg 12!!g £2~E1 = £2~£1c ,

each of which is legitimate but unpleasant for the human reader.

10.2 Development

one purpose of the •mode-declaration• is to introduce a
shorthand whereby the programmer may save himself trouble. If he
uses some complicated •declarer•, then he may avoid writing it
out in full each time that he uses it. A simple example might be
a numerical analyst, working with vectors and matrices, who may
wish to use the convenience of the •declaration•

122 An ALGOL 68 Companion

o.J!!od~ y = [l:n) I~~l,
!!!Qde.!!! = [1:n, 1:n] I~~!c

In the reach of this •declaration•, he may now use these •mode­
indications• as •declarers• by declaring a vector variable with
oy xlo or a matrix variable with D.!!! x2c. It should be carefully
noted that the value of one which occurs in the •bounds• of
these multiple variables is that which is possessed by one at
the time of elaboration of the •declaration• cv x1, m x2c an:l
not that possessed at the time of elaboration of-the •mode­
declaration•. An example may help to make this clear. In the
reach of c!n! nc, the elaboration of

en := 5 ; !2Q~ y = [1:n] £~~!;
n := 3 ; J. x1 ; print(.!H~h x1)c

shoul:l print the value •3• and not the value •5•. This means
that the •declaration• cJ. x1c acts as though the eye were
replaced by c(1:n) f~~1c. This process is known as "developing"
the •declarer• [R.7.1.2.c]. An important consequence is that, in
the reach of the •declaration•

D!QQ~ y = [1:n] £~~1.
realvec = [1:n] £~~!c ,

the •mode-indications• -~;~--;nd DI~!1J.~fc, when used as
•declarers•, both specify the same mode. The actual •symbol•
(•indicant•) chosen therefore has no influence on the mode.
Observe that the same principle applies to •identity­
declarations•, for

cref int name1 = i, name2 = ic
means that both cn~me1~-and cname2c possess (different instances
of) the same name. In the reach of the •declaration• cmode f =
f 1:2)£~!1 1 ~ = (1:3)re!}D, the •indicants• CfD and-~~D alSO
specify the same mode, when used as •declarers•; however, values
of such modes may run into trouble when assigned, for then the
bounds are checked [R.8.3.1.2.c Step 3].

The examples we have given are simple. However, a •mode­
declaration• may be used for introducing a •mode-indication•
which, when used as a •declarer•, will specify a mode which
contains a reference to itself. In fact, this will norm~lly
occur in a list processing appl i cation. For such a mode, the
compiler must be able to make some checks to determine whether
storage space for a value of that mode is indeed possible. It is
therefore not surprising that the process of developing a mode
shoul:l have some rather natural restrictions.

10.3 Infinite modes

What we call here "infinite modes" are those hinted at in
the last paragraph. An infinite mode will arise from the
• dec laration•

ostruct link = (int val, ref !in! next) c
In its reach~-the-elaboration-of

c.J:.!n! a:= (1, 1.!.!!! := (2, 1!!!! .- (3, g]JJ)c
will qenerate values linked together as shown in Mgure 10.3. In
such a linked list, the value of the last name is •nil•. If we
try to write the mode specified by o1!n~c, using small syntactic
marks, it will be

•structured-with rea -field-letter-v-

~ij_~,

where
write.

letVe
[link J-4-e

[link] repr
Since the mo

oac

0

o o-­
o

call it an infinite
however, always wor
that this infiniten1

10.4 Shielding and 1

If we consider
C_!!!QQ!

we soon come to 1

field selected by cl

the same mode. OJ
and so on ad infini i
visualize how stora(
clear that it cani
finite size. It is 1
declarations• from
the fact that, ir
declarer•, cstruct 1
which is the ;mode=:
illeqal. However, ir

cmode r
the •actual-deciarei
ego, so that thi~

• program•. Whether
indication• rests
"shielded" [R.4.4.4.

c 1 > Those who lirE

the work of C.Pair [

se •mode­
ble with
carefully
unds• of
by one at

x2c an:i
he •mode­

l n the

his means
eve were
velopin<J"
that, in

,
used as
•symbol•

he mode.
identity-

instances
QQ~ ! =

esc also
r, values
then the

a •mode­
dica tion•
ode which

normi.".ll y
mode, the

whether
le. It is
ng a mode

d at in
from the

10. 3. In
If we

syntactic

where
write.

An ALGOL 68 Companion 123

let er-a-letter-l-and-reference-to-
(link] et ter-n-let ter-e-le tter- x-let ter-t •

[link] represents the same mode which we are trying to
Since the mode contains itself, it is not unnatural to

oac

0

o o---->----T·-----~o-,
0 I .,. IO Ol

l.------.l.-o-J

r--<----J
I
.. ------,-o-,
I • 2• I o o I
L-----.l.-o-J

r--<---J
I
.. ----~o-,
1 • 3• 1 oeo 1
L-----.l.-o-J

Fig.10.3

call it an infinite modeCt>. The programmer (and the compile r)
however, always works with a finite formulation of that mode, so
that this infiniteness need not bother him.

10.4 Shielding and showing

If we consider the mode specified ty o~c, in the reach of
cmode m = struct(real v, m next) c ,

we soon come to-the con~lusion-that, unlike olinkc above, the
field selected by cnexto contains, not a name, but--a value of
the same mode. Of course, this value in turn has such a fiel:i
and so on ad infinitum. This is troublesome, for if we try to
visualize how storage might be allocated for such a value, it is
clear that it cannot be done in a computer whose storage is of
finite size. It is therefore necessary to exclude such •mode­
declarations• from proper •programs•. rhe exclusion rests upon
the fact that, in this •mode-declaration•, its •actu~l­

declarer•, D§if!!£i(f~~.! v, !!! next)o, "shows" [R.4.4.4.t] c~c,
which is the •mode-indication• on the left. It is therefore
illeqal. However, in

omode n = struct(real v, f~f Q next) o
the •actual-de~Iarer• cstruct (reai v, ref n next)c does net show
c!!c, so that this •de~laration• may-be-contained in a proper
•program•. Whether an •actual-declarer• shows a •mode­
indication• rests upon whether that •mode-indication• is not
11 shielded 11 (R.4.4.4.a]. We must therefore know what is meant by

Ct> Those who are bothered by these infinities should consult
the work of C.Pair [Pa], L.Meertens [M], and W.Brown (B).

124 An ALGOL 68 Companion

shielding a •mode-indication• before we c~n understand how
certain •mode-declarations• can be excluded. Roughly speaking, a
•mode-indication• contained in a given •declarer• is shielded if
its presence in that position does not lead to difficulties in
allocating computer storage for a value of the mode which that
•declarer• specifies.

For the •mode-indication• D!D, examples of •declarers• in
which that cmo is shielded are

ostruct(int k, ref m n) o
c£§!-§!IY£!<! n:-£~ii a) o
D££.QS: (!!!, .!!!J:)o
D££.Q£ (£~~_!) !D

and
n[1: (!.QQ~ ! = int ; m k ; re a d (k) ; k)] £~~.!o

Examples of •declarers• in-which D! D i s not shielded are
D!D
D£~! !D
O££.Q£ !D
n[1: n] ~n

and
nuni O!! (i!!E• ..!!!) 0

The precise definition of shielding is given in the Report
[R.4.4.4.a], so we shall only paraphrase it here by saying that
nmn is shielded if there is both a o§!I.~fto and a oi_~fn to its
left, or if it is in, or follows, a •parameters-pack•, or if it
is essentially local to one of the bounds of the •declarer•.

As a first approximation, one may now say that a •mode­
indication• which is not shielded is shown by the •declarer•
containing it. We then exclude from proper •programs• all •mode­
declarations• whose •mode-indication• is shown by its •actual­
declarer•. This immediately excludes such undesirable objects as

O!.QQ~ ~ = ~~
!! = EI..QS: f!,
s: = I.~f £,
g = [l:n] Q,
~ = y~!on(~, ch~!)O

However, examination of the •declaration•
D!.Q_1~ _! = f~! g_,

.9 = .P!Q£ fa
reveals that we are still in trouble with the first
approximation to the concept of showing. For, although C£~! go
does not explicitly show o_!o, the elaboration of O£~! go
[R.7.1.2 Step 1] involves the development of ego and would give
us the •declarer• D£~f E£.QS: fc, which does indeed show o!c. It
is therefore necessary to insist that we must develop all •mode­
indications• which are not shielded in order to find the •mode­
indications• which are shown by an •actual-declarer•. The
definition of showing is carefully stated in the Report
f R.4.4.4. b], so we shall not repeat it here. Perhaps the
motivation given here for that careful statement is sufficient
for its understanding.

10.5 Identificatic

Within a •seJ
•mode-indications•
same manner as
order that they
• ind i:;a tion• used

whereupon the val(
of identification

Althouqh th !
the same way for •

r---------
s ub-

symbol
I
I
I
I
I
I
J..

0 (

T

I
I
I

open­
symbol

I

unitar}
I

r-----1
1 fora
I I

J..
__ J

£!
r --,
L-----1

fora
para mE

pac
I

L---------.J

w:t tc hed care full)
a •mode-indicatior
The reason for thj

o¢111!
¢2¢

¢3¢
¢4¢

ierstand how
speaking, a
shielded if

i.culti es in
~ which that

; larers• in

tlc
are

the Report
aying that
refc to its
;-or if it
larer •.

at a • mode­
• declarer•
all •mode­

ts •actual­
objects as

the first
ugh c~~f go
E tl~!i! go

would give
II CfC. It
all •mode­
the •mode­

\rer•. The
t he Report
~rhaps the
sufficient

An ALGOL 68 Companion 12')

10.5 Identification

Within a •serial-clause• containinq a •mode-declaril.tion•,
•mode-indications• are subject to protection [R.6.0.2.d], in the
same manner as are •identifiers• and •dyadic-iniications•, in
order that they may not become confused with the same
•indication• used elsewhere. It is possible therefore to write

tl(~Q£g ~ = ~~~1 ; ~ X := 2 ;
ftL----(-----.J ¢

(~QQ£ ~ = l~! ; ~X .­
¢ L----(----.J ¢

print(x))
print(x))n

whereupon the values printed shoulrt be •1• and •2.0•. The methoj
of identification of the •mode-indications• is shown by "--<--".

Althouqh this identification process is familiar (it works
the same way for •identifiers•), there is one small point to be

declaration
I

r-------------------r---~-----------r---T------,
sub- rower bus- 1 I

symbol symbol I I
I r---------+-------, I I I
1 unitary-clause unitary-clause! 1 identifier
I I I I I I
I r-----+-----, I I declarer I
I 1 formula I up-to- formula I I I
I I I I symbol I I I I
L L --~-- L L ----~---- ~ ~ ~

0 (b b + c d
T T --r-- T r ----T---- T T

L-----+-----J I I I I
formal- cast-of- unitary- 1 I

parameters- symbol clause I I
open- pack 1 I close- I

symbol 1 1 I symbol I
L---------.l.--------rL------~------__J I

I I
routine-denotation

I
operand

cpera tor
I
I

en
T

I
I
I
I

operand
I
I
I
I
I

L---------T----------~------J

w:1tched carefully.
a •mode-indication•
The reason for this

o¢1¢
¢2¢

¢3¢
¢4¢

I
formula

Fig. 10 • .5

It is that no •indicant• may b?. used both as
and as il •monadic-in chcat ion• [R.1. 1 • .5.h].
is best shown by the following example.

R~9!fl !~i h, c, e ; ¢ ¢

Eggin ~2Q~ 2 = ~~21
((2 b) : b + c) 1 e

¢ • • • rt

126 An ALGOL 68 Companion

¢5¢ ~.!!Q ;
t6t QE ~ = c!n! x> !n! 1 + x
¢7¢ ¢ ••• ¢

¢8¢ ~QQ~ g = QQQ!
¢9¢ ¢ ••• ¢

¢10¢ ~ndo
The problem here is whether o(~ b) b + co is a •row-of-rower•
(remember that it is permit ted to replace o[)o by o () o
fR.9.2.q)) and therefore c((~ b) b +c) c! eo is a
•declaration•, or whether o((~ b) b + c)o is a •routine­
denotation• and therefore o ({~ b) : b + c) g eo is a •formula•.
These two possibilities are sketched in figure 10.5. If it were
such that o~o could be used as a •mode-indication• in line 2,
and again as a •monadic-indication•, in line 6, then confusion
would reign, for the matter can only be resolved when we meet
the •1eclaration• of ogo in line 8. If we now make it illegal to
use c~o both as a •monadic-indication• and as a •mode­
indication•, then this unhappy situation does not arise. For
those interested in compilation problems, this example shows why
it is necessary to identify all •mode-indications• before a
detailed parse of the •program• is made, for the identification
of the second occurrence of obo on line 3 depends upon the
information discovered in line 6.

10.6 Equivalence of mode indications

In the •mode-declaration•
omode a = ref real,
---- ~ = ~~! E~~lo

it is rather obvious that both o~o and OQo, when used as
• declarers•, specify the same mode. However, since a •mode­
declaration• has the possibility of depending on other •mode­
declarations•, or on itself, on e may make several •mode­
d eclarations• like

o~!E!!£! ~ = (ref ~ left, !~f ~ right),
Q = (ref Q left, ref struct

(!!! E-Iei~;-~~f b right) right) ,
c = (£~f d lef t, !~!~ righ~):
d (ref ~ l eft , !~f f right) ,
~ (ref f l e ft, !~f g right)o ,

in which it is not immediately c l ear whether the modes specifie1
by c~, E• £ 1 c!o and o~o are all different or perhaps whether
some of them are the same. In fact, a close examination reveals
that each of them specifies exactly the same mode. Each is
merely a different way of thinking about the same kind of data
structure. It might be thought that, because the human reader
(presumably) has trouble in deciding that the five •mode­
indications• are equivalent, it would also be difficult ani
expensive for the compiler. But this turns out not to be the
case<t >. Thus, in large programs, perhaps written by several
persons, each person may describe the basic data structure in
his own way. If these are indeed the same, then the compiler
will quickly find out about it.

< t> See the papers of Koster [Ko], Goos (G] and Zosel [Z].

10 . 7 Binary trees<•

We shall now
binary trees. These
figure 10. 7.a. in v i
At e ach node thei
branch". In more de ·
in f igure 10.7.b , a
T he first and las1
b r a nches, respectiv1

0----

r---o---, ,--
1 I I

0 r--o r--o--
I 1
0 0

Fig. 10. 7.

information, perha(
particular node.

The necessary •
D~!£~ ~~~ = (f~

We may observe that
the sense described

A binary tree j
illustration, we s
st rings in alphabeti

10 .8 Insertion in a

Sup pose that ve
"bob", in that ox
bina ry tree such as
st ring would resul
Afte r the second a

r-o-r---.J.-­
Ioeol •jiu
L-0-i-----

Fig.10.8

<1> For an authorita
[Kn] section 2. 3 .1.

of-rower•
by D () IJ

ec is a
•routine­
formula•.
it were

n line 2,
::on fusion
n we meet
llegal to

•mode­
rise. For
:;bows why
before a
Lfication
1pcn the

1 used as
•mode­

!r •mode­
•mode-

right),

pecified
whether
reveals
Each is

of data
n reader

•mode­
cult and

be the
several

ture in
compiler

].

An ALGOL 68 Companion 127

10.7 Binary trees<t>

We shall now consider some procedures for manipulating
binary trees. These are data structures of the shape shown in
figure 10.7.a. in which each "o" is called a "node" of the tree.
At each node there are two branches a "left-" and a "right
branch". In more detail, the value of each node is, as is shown
in figure 10.7.b, a structured value with at least three fields.
The first and last fields are references to the left and right
branches, respectively, and the middle field contains some

r---o---.
I I
0 ,---0

I
0

0-----.,
I

r---o---,
I I

.---o--, 0--,
I I I
0 0 0

Fig.10.7.a

r-o-T---~-----r-o-1
r-to o I •attribute a 1 o ot-,
I L-o-J-.-· ----------'--o-.J I
I I

Fig.10.7.b

information, perhaps a string,
particular node.

which is an attribute of that

The necessary •mode-declaration• would be
cE!~~ct no~~= (f~± llQQ~ left, §!f!n~ val, ~!nod~ right)c.

We may observe that the mode specified by D]~£~c is infinite, in
the sense described in section 10.3 above.

A binary tree is used for many different purposes. For an
illustration, we shall use it to store and retrieve character
strings in alphabetic order.

10.8 Insertion in a binary tree

Suppose that we are given three strings "jim", "sam" and
"bob", in that order, and that we wish to store these in a
binary tree such as that discussed above. Storing the first
string would result in the structure shown in figure 10.8.a.
After the second and third strings have been stored, the

.--o-r---i--~0-,
JoSoJ ajima Jo9oJ
L-o-'--------'--o-J

Fiq.10.8.a

,.-o-r----i---~o-,
,-to oJ ajima JO ot-,
1 L-o-'-------'--o-J I
I I

r-0 t A --r-0-, r-0-r----'----r--O-,
Jo&oJaboba Jo9ol Jo9oJ asam• Jo9oJ
'--0-i-----'--o-.J '-o-'--------'--o-.J

Fig.1 0. 8. b

<t> For an authoritative discussion of binary trees, see Knuth
(Kn] Section 2.3.1.

128 An ALGOL 68 Companion

structure is that shown in figure 10.8. b. Note that the shape of
the tree will depend upon the o r der in which the strings are
encountered. Whichever string is stored first generates a node
which becomes the "root" of the tree. The succeeding strings are
then compared with those already present to determine whether to
branch to the left or to the righ t.

A procedure to insert a given
root is referred to by arootc is as

a££~£ insert = (§!~ing s, ~~! !~!
ref ref node n := root ;

s tring esc into a tree whose
f ollows.

while-(£~!-~2£~ : n) :1: ni!
n := (s < val Qf n 1 lef t

(£~f £ef n21~ : n) := gQg~
) a

!lQQ~ root)

do
Qf n I right Q! n
: = (.!!i! , s , .!!.!!)

Suppose that we start with a n
•declaration•

empty tree, i.e., the

aref node tree := ni le
and then elaborate--ihe--;call• aii;ert("jim", tree)c. The

otreec
--,-

0

0 0

0

0

oeo
0

Fig.10.8.c

otreeo
--"T-

0

0 0

0

crooto
-r-

0

0 0

0

ona
T

0

0 0

0

I
0 0

L--->--o o--<--o o
0 0

r-0-T--~---T-o-,
Jo-E3oJ •jim• toeot
L-o --.1.-o-J

Fig.10.8.d

situation both before and after this • call• is shown in
10.8.c and d. Observe that t he modes of both the
parameter• aroota and the •actual-par ameter• otreeo
same, viz., that specified b y a~~f £~! UQ£~a, so

figures
•formal­
are the
that no

coercion occurs when the parameter i s passed.

- The •declaration• aref ref node n := . · ~plies that the
mode of ana is that specified--by--~~~! ~~!m g~g~o. Since
croota is of mode specified by ofef ~~f .!!QQ~a, the initializing
assiqnment to cnc invokes no coercion. In the •assignation•

c (£~! ~~! UQQ.~ : n) : = .!!QQ.~ := (.!!!.!, s, !!.i.!> a ,
the second occurrence of anodea is a •global-generator•
generating a name of mode o~~f-yQg~c, to which is assigned the
value of the •structure-display• c(.!!i.!. s, .!!i!)o. Because the
mode of ana is oref ref ref nodeo, it must be dereferenced once
before the new node-is-assigned:-This is the reason for the
•cast• aref ref node : no. This •cast• is necessary. In fact, on
:= nodeo--is-not-an •assignation•, for there is one •reference­
to-•-too many on the left.

If nov ve elat
have what is she
elaborated th e a ssi
figure 1 o. 8. d t o
has the a priori me
position, it is de l
mode of aright

atreea aroota
-~- -.-

0 0
0 0 0 0

0 0
I
0

L-->--o o
0

r-0-,----1-.
I oeo J•jim.
L-0-'------·

r-o-.--­
I~OJ •S
L-o~-

Pig.10

~elected by aright
J..n a node. Sine
assiqn aent nov tak
ana down the
ainsert ("bob", tre
10.8.f .

10.9 Tree searchin

Another proc
tree for a node vh
of the •dec1arat
.!!!!a, this would b

aE~Q£ search = (
(ref ref node

vhi1ecrerii
-.it s ;-vaj

t he n m :=
elSe n :=
t! ; fa!§~

done : try~
) a

The value deli ver1
with string asa
effect, the node 1
local •vari able• 1

Using the tr e e c 1

ha pe of
ngs are
a node
ngs are
!ther to

!e whose

. , the

~c. The

figures
•formal­
are the
, that no

that the
1. Since
:ializing
Lon•

,
anerator•
igned the
!!.USe the
need once
for the
fact, on

eference-

An ALGOL 68 companion 129

If no v we elaborate the •call• cinsert ("sam" , t r ee)c, we
have wha t is shown in figure 10.8.e. Here we have effectively
elaborate d t he assignation en := right Q! no in g oing from
figure 10.8.d to 10.8.e. In the •se lec t i on• aright Qf no, one
has the a priori mode a£!! ref ~~! BQ1~a , but being in a weak
position, it i s de r e ferenced (twice) to a£ef llQQ~a. The a priori
mode of aright Qf nc is thus o~~! £~{ nog~a, s ince the field

atreea croota ana ana
T

atreec
--,--

ar ootc
~ -~- -~ T

0

:
0 0 0

0 0 0 0 0

0 · 0 0

I
0 0

L--->--o 0 0 0

0 0

.-J
,.-o~-~o-,
t oeo t•jim•IO ot>,
L-o-L-----~-o-J I

,.----l
r-D-T-~-~0-,

lo9ot •sam• toeot
L-o~----~-o-J

Fig.10.8.e

0 0 0

0 0

0

·o o o o
0 0

I I
0

0 0
o I

0 0----(---l

0 0
L, I
,.-o-r-~--~o-,

,.<to ol •jim• IO ot>,
1 L-o-L--~--~-o-J I
I I

,.-o-~ 1 o 1 r-O~ r-o-,
lo9ol •bob• lo9ot lo9ol •sam• lo9ot
'-o-L-----L-o-' '-o-L---~o-J

Fig.10.8.f

selected by aright of na is thus a name which refers to a name
in a node. Since the mode of ana is aref ref ref nodec, the
assign ae nt nov takes place without further-coercion~-This- moves
one do wn the tree by one node. After elaborat i on of
cinser t("bob", tree)a, we would have what is shown in figure
10.8. f.

10.9 Tree searching

Ano ther process in tree manipulation is the s e archin g of a
tree for a node which contains a given attribute. In the reach
of the •declarations• of section 10.8, and of aref node m :=
n!!o, this would be accomplished by the following: --- - ---
DE~Q£ s earch = (~!£!~g s, ~~! ~~! nog~ root) EQQ! :

(~! re! ~QQ~ n := root ;
whi le (£~! BQde : n) :#: n!! gQ
i! s = val Q! n
! he n m := n ; gQ_!Q done
else n := (s < val ~! n left Q! n 1 r i gh t Qf n)
fi ; fa!~~

done : trn~
) [J

The value delivered by the •procedure• is •true• if th e node
with string csa is found; otherwise , i t i s •false• . As a side
effect, the node where the string occurs i s ass i gned t o t h e non­
local •variable• ama; otherwise, ama remai ns refe r r i ng t o •nil•.
Using the t ree constructed in sec tio n 10 .8, t he result of

II

l.i

'·'

,,
I'·
I·

I!

130 An AlGOL 68 Companion

elaboration of the •call• csearch("sam", tree) c would result in
the situation pictured in figure 10.9.

The •variable• amo serves to remember where the node was
found. In the •assignation• om := no, one is dereferenced twice.
Note also that in the •formula• as = val 2! no, first one is

o tree a orootc one cmc
--T- -r- T T

0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0

I

I 0 0

L--->--o 0 0 0

0 0

,---J
r-0-r--~~-o-, o

r-<to Olajimalo ot>-T<-o o
I L-o-.1.----~-o-.J I 0
I I

,.-o-T---.1.---r--o-,
I090I aboha 10901

L-o-.1.-------.L-o-J

,.-o-r----4---r-o-,
I090I asama IOGOI

L-o-.1.-------.L-o_J

Fig.10.9

dereferenced twice, then oval of no is dereferenced once before
the comparison of strings is made.

10.10 Searching and inserting

The two processes just described are often combined into
one. Thus we may wish to search a binary tree for a given
string, to insert it if it is not there, and, in any case, to
return with a knowledge of its position. This would be the kind
of action necessary if the tree were being used as a symbol
table for a compiler. A procedure to accomplish this might be as
follows.
E!Q~ searchin = (§!E!!!g s, !~! £~! !!Qg~ root) £~f !~f ~2g~

(E~f [ef !!2g~ n := root ;

) []

while (ref ref node : n) :#: !!!.! QQ --I!-s :;;;-vai-Q~ YL

!!!~!! 9:2_!Q done
~ls~ n := (s < val 2! n left Qf n I right Qf n)
t!

(ref ref !!2g~ n) := !!2Q~ := <ni.!, s, n!.!> done :-;
All the elements of this procedure have been seen already. It is
therefore sufficient to remark that the value delivered ty the
procedure is that of the one which follows the label adone :c,
after this one has been dereferenced once.

10.11 Tree waH

Another ft
as a "tree waH
node of the
node, e.g., prj
walk is callE
Knuth [l(n]) del
first reaching
branches, or

example, for th
would perform
walk in the ord

We shall n
the nodes, in
binary tree. l'h
provides a ne
empty, then do
that we know ho
one, first wa
walk the right

at1 t
~2t

t3t
~4¢

~5¢
t6t

In lines 3 and
aright of root
similar ::-merel
the pre walk we
For the tree
walk (tree) o sho1
that the •actua.

We may no
it to perform a
fora of a •proc

D.E£~~ post wa:
~~ll!! ,era£

(r : fl: n:
I q (left-·

q (root)
~!!~D

r esult in

nod e was
ed twice.
st one is

,ce before

nbined into
a given

lY case, to
~ the kin1
as a symbol
might be as

:eady. It is
:ed ty the
! 1 ad one : c,

An ALGOL 68 companion 131

10.11 Tree walking

Another fundamental aanipulation with binary trees is known
as a "tree walk". This is a process of visiting each and every
node of the tree. Osually some action is to be taken at each
node, e.g., printing its string, or counting the node. A tree
walk is called a "pre walk", "post walk" or "end walk" (see
Knuth [Kn]) depending on whether the action is to be taken upon
first reaching the node, or between examining its left and right
branches, or upon leaving the node for the last tiae. For

,.~-,

r--i B P---.
I L--.J I ,.__._, ,.__._,

I A I I C I
L---.J L---.J

Pig .10 .11

example, for the tree displayed in figure 10.11, a pre walk
would perform action on the nodes in the order B A C, a post
walk in the order 1 B C and an end walk in the order A C B.

We shall nov write a procedure for printing the strings of
the nodes, in alphabetic order, by doing a post walk over a
binary tree. This is a typical problem in which recursion
provides a neat solution, which is as follows: if the tree is
empty, then do nothing; otherwise, using an induction hypothesis
that we know how to walk a tree with the number of nodes less
one, first walk the left branch, then print the string, then
walk the right branch. The procedure is as follows.
ct1t E~Q£ post walk = (£~! ~2Q~ root)

t U (root : # : .!!!:.!
t3t 1 post walk (left 2! root) ;
t4t print (val ~! root) ;
t5t post walk(right 2! root)
t6t)c

In lines 3 and 5, the •actual-parameters• cleft of rootc and
cright Q~ rootc are dereferenced once. Note that an end walk is
similar - merely interchange lines 4 and 5 (except for a; c). For
the pre walk we interchange lines 3 and ~ (except for the cl c).
For the tree discussed in section 10.8, the •call• cpost
walk(tree)c should print its strings in alphabetic order. Note
that the •actual-parameter• ctreec is dereferenced once.

We may nov make this procedure more useful by generalizing
it to perform a given action at each node. The action is in the
fora of a •procedure• which is passed as a parameter.
DE~Q£ post walk a= (~! £2~~ root, E£2£~~! EQ~~) action)
~~g!~ pro£ g = (~~! EQ~~ r) :

(r : 1: nil
1 q (left -:Q! r) ; action (r) g (right 2! r))

g (root)
~~~c 



-

132 An ALGOL 6B Companion 

13-t"-Lo 

10.12 A non recursive approach 

The recursive solution to the tree walk froblem, given in 
section 10.11 above, is simple to program and easy to 
understand. When proving the correctness of programs, this is an 
important consideration. However, by using recursion, a certain 
price must be paid for this convenience, because the run-time 
organization may need to build a stack to remember the nested 
•calls• and this stack will require storage the size of which is 
unknown. In certain situations the programmer may not wish to 
pay this price. For example, he tlla.f be writing a garb.lge 
collection routine which must work well just when the amount of 
free storaqe is at a minimum. For this reason other schemes of 
walking trees are exploited (SW). We shall outline such a scheme 
here. 

The basic principle is that the tree is broken apart at one 
node, some of the names are reversed and three variables are 
used to keep track of where the break occurs. As we move the 
break down the tree, the names are reversed to refer to where we 
came from. As we move up the tree, the names are restored to 
their former state. Also, when we move from the left branch to 
the right branch of a node, it is necessary to shift the 
reversed name from the left to the right. The extra storage 
required consists of three variables ap, qc and oro of mode 
specified by Df~! fg! ~gg~c, and the existence of a boolean 
field in each node (or corresponding to each node) which 
remembers whether we have already moved across that node (i.e., 
whether the name which refers upward is on the riqht). The value 
of this field is initially •false •• 

to 
The •mode-declaration• given above is thus amended slightly 

astruct !!QQg 
<~~f ~gg~ left, §!fi~9-va1~ Q221 

The situation at some moment in moving down the tree is 

ego 

0 

0 0 

0 

0 

0 0---->----, 

apo 

0 0 

r----<----o o--o o 
,.-o--r--~--r-0-, 0 0 

L<to ot 1 o ct->-, 
L-o-~-------L-o-J 1 

I 
o r-o--r---L---r-o-, 

r<to ot to ot>, 
1 L-o-~-------L-o-J I 

,.-o-r---~---T-o-1 
r<to o I I o ot>, 
I L-~-------L-o-.J I 

I 
r-0-r---i----r-o-, 

r<to o I I o ot>, 
1 L-o-'--------~-o-J 1 

Pig.10.12.a 

An 

pictured in figure 10.12 

The steps in the pr 
c( 
left 

after which the situatio 

oqo ope 

0 0 

0 0 0 0 
0 0 

0 0 

0 0 0 o---->---
0 0 r---· 
I r-0--r--· 
I to OJ 
I L-o--L--. 
L-->--, 

,--0-r---i---T-o-, 
r<to OJ to ot 
I L-o-'--------~-o-J 

only add some way to s 
the •condi ti on• 

D(f~ 
One should also check t 
correctly and works pre 

When the walk c 
across the node. The sj 

oqo 

0 

0 0 

0 

0 
I 

L(j 
L-o o>, 

o I 
r-0-r---.J.--r 

r<to o I 1• 
I L-o--L------.J.. 

and the steps in the p 

right 
left 



ven in 
.y to 
; is an 
:erta in 
1n-time 
nested 

tich is 
.sh to 
1arb,1ge 
tnt of 
~roes of 
scheme 

at one 
as are 
nv e the 
1 ere we 
red to 
inch to 
ft the 
ston ge 
f mode 
boolean 

which 
(i.e., 

e value 

lightly 

) 0 

ree is 

I 

~>, 
I I 

An ALGOL 68 Companion 

pictured in figure 10.12.a. 

The steps in the process of moving down are 
o( r := left 2! q ; 
left .2! q : = p 

p : = g ; 
g.- r )o 

133 

after which the situation is as shown in figure 10.12.b. We nee1 

ego opo 

0 0 

0 0 0 0 

o o I 
I ,--o- T-------r-o-, 

0 0 L(tO OJ JO ot-)-1 
o o o o---->---, '-o-~---~-J..-o-J I 

o o .-----t-->--------J I 
I ,--0-r---L---r-o-, ,.-o-T---~---T-0-, 
I I o o I I c ot>, .-<to o I I o ot>, 
I L-o-...._ _____ -L_o-J I I L-o-J. ______ -J._o_J I 
L--)--, 

,.-o-r---J. ___ T-o-, 
.-<to o I I o ot>, 
I L-o-L-------~-o-J I 

Fig.10.12. b 

only add some way to stop this process. This is accomplished by 
the •condition• 

o (£~! B.QQ~ : q) :I: B!.!c 
one should also check that the process starts from the orooto 
correctly and works properly when o (I~f !!2~~ : q) :=: !!.!.J:o. 

When the walk on the left branch is done we must move 
across the node. The situation before is as in figure 10.12.c 

ego ope 

0 

0 0 

0 

0 0 

1 .----<-----o o--o o 
I ,.-o-r----~--r-r-0-, o o 

0 

L-o o>, 
o I 

L<to oJ JFto ot->-1 

L-o-~-------~-~-o-J 1 
I 

,--0-T----~--T-T-0-1 
.-<to o I I F I o ot>1 
1 L-o-...._------~-~-o_J I 

r-0-T ____ ....__T_T-o-, 
.-<to oJ tFJo ot> 1 

1 L-o-L-------~-~-o-J I 

Fig.10.12.c 

and the steps in the process are 
or .- q ; 

q := right 2f p ; 
right 2f p := left 2! p ; 
left 2! p .- ro 



134 An ALGOL 68 Companion 

The si tu a t i on a f ter elaboration of thes e statements is as in 
fi qur? 10. 12. d . Now we perfor m the action a t this node and then 
r e me mbe r t ha t we have done so by 

cacticn(p) 
tag 2 ! p := !!~~c 

Th e process of mov i ng up the tree i s the o p posite of moving down 
the tre e exce pt tha t we must check whe ther we are done, 

c (!~f !!2£~ : g ) :=: rooto 
and whe ther we should chang e to mov i ng acr oss 

c -, ta g Qf pc 
~lso, as we move u p , t he va lue o f t he fl ag field is restored to 
• fal se •· 

opo 

0 0 

0 0--0 0---->----, 
o o r-O-r----~-r-r-0-1 I 

cq o 

0 

0 0 

0 

r-<-+o o I I Tl o o+>J 
I L-o-~-------~-~-o-J 

I 

0 

r<o o-J 
I o 

r-O-r----~--T-T-o-1 

r<+o o I I PI o o+>1 
I L-o-~-------i-~-o-J I 

r-0-r--~--T-T-o-, 

r<+o o t JFJo ot>1 
I L-o-i-------~-~-o-J I 

Fi g.10 . 12. d 

The com plete a lgo r ith m i s e xpressed as follow s: 

C£! Q£ wa lk= ( !~f ~QQ~ r o ot, E!2£ (!~! .!!2£~) act i on) 
Q~~ig ~~! .!!QQ~ p := root , g : = r oot, r : 

.if r o ot : ~: Bil 
th e n 
d"own : !!..h.U ~ cr~f n2£~ : q> =~: nil ao 

(¢see figure 10.12.a¢ 
r : = lef t Qf q : l e ft 2! q := p p := q 
q := r ¢ see figure 10.12. b¢ ) 

across : ¢see fiqure 10 .12.c¢ 
r := q : q := righ t 2! p ; righ t 2! p := lef t Qf p 
left 2! p : = r ; ¢s ee f ig u re 10 . 12. d¢ 
t a g Qf p : = !!.!!~ : acticn(p) 

if (!~! .!!QQ~ :g ) :~: nil !.h~~ down !i 
up : wh!l~ (f~f BOd~ : g ) :1 : root £2 

if t ag 2! P 

fi 

t he n tag o f p : = !~1~~ r := ri g ht Qf p 
~ight 2! p- := q ; q := p p : = r 
~J~~ across 
f i 

~!!.Q ¢Walk¢ 

a) 
b) 
c) 
d) 
e) 

10.1 Syntax 

Is 
Is 
Is 
Is 
Is 

D.!!!Qde real = 1 
D.!!!Qde a:-;-[ 1 :n 
Dl!!Q.Q~ ! = ( ]re 
0~!!12.!! ~ = (b) 
O.§?lf.\!£! !! = Ci 

10.2 Development 

a) In the reach of 0 
E!Q£ ~c, develop 

b) What is printed 
print(.!!EQ v) end 

c) Develop the •deci 
d) Develop the •decl 
e) Develop the •decl 

10.3 Infinite mo 

a) What are the two 
10.3? 

b) What are the thre 
10.3? 

c) Is the mode spe 
Q, Q = .§?!ruf!(a 

d) Build the list ;t 
e) Is o J!l!~ a : = ( 1 , 

10.4 Shielding a 

a) Is D!!!O shielded i 
b) Is Dl!!o shown in 0 

~ = [ 1 : 1 0 ]m, b = 
c) Can omog~ !-= ref 
d) can o.!!!21~ !l = -re: 

proper •progra;~ 
e) Can cmode m1 = 

b) • l!!J-;-Er:2£ <!!!1 : 

10.5 Identificat. 

a) Is 0 ( Q : U ) ~ VI 

10.6 Equivalence 

a) In the reach of 1 

specified by cao 
b) Are the modes spec 

~ = ~truct(ref a 
c) Simplify --the-- •me 

.§!~.£! Ci.!!! u, re J 
d) In the reach of-;; j 



as in 
then 

tg down 

Jr ed to 

An ALGOL 68 Companion 135 

Review questions 

10.1 Syntax 

a) Is D~Qde £~~1 = !Q~ i~~o a •mode-declaration•? 
b) Is o~Qde a = [ 1:n]£~alo a •mode-declaration•? 
c) Is o~Q.Q~ £ = [)!~ale a •mode-declaration•? 
d) Is o~nig~ ~ = (Q)D a •mode-declaration•? 
e) Is D.§~E~~.!: !! = (i!!.~ q, E~! s) o a •mode-decla ra tion•? 

10.2 Development 

a) In the reach of omode 
EIQ£ ~c, develop-the 

b) What is printed by 
print(!!£~ v) ~g~c? 

c) Develop the •declarer• 
d) Develop the •declarer• 
e) Develop the •declarer• 

10.3 Infinite modes 

~ = !~! Q ; ~Q.Q~ ~ = [ 1:n] in.!:. d 
•declarer• cstruct (a a, d d)c. 
DQ~~!g !Q~~-~-;-r 1:2] 1u1 : £~! ~ v 

DfEI!D in 11. 11.t of the Report. 
c!:EiE!~c in 11. 11.k €:9 the Report. 
D~EQfD in 11.12.w of the Report. 

= 

a) What are the two occurrences of c!!n!a on line 4 in section 
10.3? 

b) What are the three occurrences of cJinfo on line 6 of section 
10.3? 

c) Is the mode specified by c~c, in the reach of D!!!QQ~ ~ = I~t 
Q, Q = ~~ru£,!:(~ a)c, an infinite mode? 

d) Build the list structure shown in figure 10.3 from top down. 
e) Is o.J:!.~f a : = ( 1 I (2 I (3 I nil>)) D a •declara tion •? 

10.4 Shielding and showing 

a) Is D!D shielded in o[1:n]~.!:IY.£!(! a, in!: b)o? 
b) Is o~c shown in c.§!E~.!:(~~f ~a, Q b)o, in the reach of DillQ~~ 

~ = [1: 10]~, Q = EE~ ~c? 
c) Can omo.Q~ ! = I~t E£OC ~o be contained in a proper •program•? 
d) Can o~g.Q~ !1 = f~f ~£, ~£ = §.!:f!!£~(~1 f)c be contained in a 

proper •program•? 
e) Can omode m1 = union(m2, m3), !!!£=.§.!:£!!£.!:(£~!ill! a, [l:n]!!!.J 

b), ~l-;-E£2£<!!!.1)~-be-contained in a proper •program•? 

10.5 Identification 

a) Is c( ~: u ) ~ vo a •formula• or a •declaration•? 

10.6 Equivalence of mode indications 

a) In the reach of D!!!QQ~ ~ = r 1:10] ~h!!ID, are the modes 
specified by o~o and o§tr!n~o equivalent? 

b) Are the modes specified by D!!D and c~o, in the reach of D!!!Q~~ 

~ = ~.!:£!!~!:(!~! ~ x), f = f~! §!!~£!(Q x)o, equivalent? 
c) Simplify the •mode-declaration• D§.!:EY.~.!: !! = <in~ u, fgf 

struct(int u, ref a v) v)o. 
d) In-the-reach of-~§!£~~! ~ = (I~f ~ r, QQQb s), Q = (~QQb s, 



136 An ALGOL 68 companion 

ref a r)c, are the modes specified by c~c and DQD 
equivalent? 

e) In the reach of a§!E~! ~ = (!~f 1 a, i~! b), 1 (£gf ~ a, 
int b), m = (ref k a, int b)a, are the modes specified by 
~~;}a and-a~o equivalent?--

10.7 Binary trees 

a) In the reach of cmode nood = ref struct (nood 1, §!Ei~g val, 
nood r)c, does D~QQ~a-specify-an-infinite-mode? 

b) u~in~ dt most three statements, in the reach of the •mode­
declaration• for anod~c of 10.7, construct the binary tree 
of figure 10.B.b. 

10.8 Insertion in a binary tree 

a) Write, as one •assignation•, the equivalent of oinsert("rou", 
tree)c, for the situation in figure 10.8.f. 

b) For the tree as shown in figure 10.8.f, what is printed by 
cprint(val Qf left Ql tree)c? 

c) For fiqure 10.8.f, what is the value of c(£g1 ~Q~~ root) 
: = : no? 

d) For figure 10.8.f, what is the value of cleft Qf tree:=: nc? 
e) For fiqure 10.8.f, what is the value of cleft gf n ·=· ni!a 

and that of cleft Qf n ·=· (!~! ~QQg: .!!i1)c? 

10.9 Tree searching 

a) Rewrite the •declaration• of csearchc without using 
•completer•. 

10.11 Tree walking 

a 

a) Define a •procedure• cplc such that cp1 (tree) a will print the 
strings of a tree (see figure 10. 11) in the form 
((()A())B(()C())). 

b) Define a •procedure• cp2o such that cp2(tree)a will print the 
strings of a tree (see figure 10.11) in the form (A,B,C). 

13.12 A non recursive approach 

a) Alter the algorithlll of 10.12 from a post walk to a pre walk. 

1 1 Easy transput 

11 ·1 General remar 

. The transput 
l.tself [R.10.5). 1 
to explain any 
transput routines 
elaborate the rout 
not to emulate a c 
~emarks are incl 
~nformal remarks 0 
a beqinner, are ap 

The general 
used. This means t 
language should 
transput routines. 
or special cases. 

11.2 Print and rea 

The two most 

and 

We have met 
chapters. The 

the 

to the 
proc' 

standard 
procedure oreado i 
~nput file (probab 

and 

I 

or1 
An important point 
~ccept only one 
~ncc;>rrect. The modE 
beg~ns with •row­
e print ( (i, j) ) 0 is 
Note that cprint ( (l 
•closed-clause• wJ 
multiple value, a l 

. Observe that, 
cpr1 ntc, •constani 
•row-display• (or 1 
procedures like r 
allow for a rudimer 
~utput files. Thu 

name", space, "add 
output at the top o 



d ego 

m a, 
ied by 

l Hl, 

•mode­
y tree 

:("ron", 

i. nted by 

root) 

:=: no? 
• =· nile .. ---

1si ng a 

print the 
the form 

print the 
~,B,C). 

pre wallt. 

An ALGOL 68 Coapanion 137 

11 Easy transput 

11.1 General remarks 

The transput routines of ALGOL 68 are written in ALGOL 68 
itself [R.10.5]. This means, in theory, that it is not necessary 
to explain any of them here. In order to understand what the 
transput routines do, we need only to act like a computer and to 
elaborate the routines of the Report. However, most of us prefer 
not to emulate a computer. For this reason, extensive pragmatic 
remarks are included in section 10.5 of the Report and some 
informal remarks on the simple routines, which would be used by 
a beqinner, are appropriately the subject of this chapter. 

The general philosophy is that no new language tricks are 
used. This means that what we have already learned about the 
language should be sufficient for the understanding of the 
transput routines. The transput does not depend upon exceptions 
or special cases. 

11.2 Print and read 

and 

The two most useful routines for the beginner are 
cprintc 

area de 
we have met them before in several examples in preceding 
chapters. The procedure cprinto is used for unformatted output 
to the standard output file (probably a line printer) and the 
procedure creado is used for unformatted input from the standard 
input file (probably a card reade~. Examples of their use are 

and 

cprint(x)c 
cprint ( ("answer.::.=!.."• i)) c 

cprint((new page, title))c 

cread(x) o 
oread ( (i, j)) c 

cread((x1, new line, y1))c 
oread((a, space, b, space, c))c 

An important point to notice is that both cprintc and creado 
accept only one •actual-parameter•. Thus cread(x, y)c is 
incorrect. The mode of the •parameter• of oprintc and creado 
begins with •row-of-•. This means that oread((i, j))c or 
oprint((i, j))o is acceptable since o(i, j)c is a •row-display•. 
Note that oprint((x))c is as good as oprint(x) o, for o(x)c is a 
•closed-clause• whose value is oxo and oxo will be rowed to a 
multiple value, a row with one element. 

Observe that, in addition to •variables• like oxc (and for 
oprinto, •constants• like c"answer.::.=.::."c), the •units• of the 
•row-display• (or the single •parameter•) may be certain layout 
procedures like ospace, backspace, new linec or cnew pagec, to 
allow for a rudimentary control over the standard input and 
output files. Thus cprint((new page, "page~10", new line, 
"name", space, "address"))c, should result in the following 
output at the top of a new page. 



138 An ALGOL 68 Companion 

PAGE 10 
NAME ADDRESS 

11.3 Transput types 

In order to understand what values can be printed and read, 
we should examine the •mode-declarations• for the hidden 
•indicants• DQJ!!!IE~D and c!.!!!1.E~c [R.10.5.0.1.b,e ]. We call 
these "hidden" because, although they appear in the Report in 
the form c% ~l!!!IE~a and a~ i~!1.E~a, they may not be used 
directly by the programmer. They are present only for the 
purpose of description of the transput routines. If one is used 
by a programmer, then it wi ll be r e g arded as an •indicant• with 
no defining occurrence. 

The declaration of agy!!.I.E~D may be para phrased as follo111s: 
DQJ!!!IE~c specifies a union of the modes c!J!!, £~~1. ~QQlc and 
c~E~fo, together with prefixed a!gagas where applicable, and all 
multiple and;or st ructure d modes bui l t from these. Examples are 
c( Ua!. §!£i.!!.!l• £Q!!E!a and a[ ].2!.!!!£.! (!!!! n , [ ]QQQ! b1) a. Note 
that values of each of t he se modes are constants. 

If we consider a union o f the same modes as for OQJ!!!1.E~c, 
but each preceded by •reference to•, then we have the mode 
specified by o!a!y~a. Examples are D£~! i.!!!. E~! ~h!~· 
£~![ ]j.nt, £~! §!!!_!!g , £~1 ~Q~.E!c and aE~t[ ]§!fl!£!Ci!!! n, [ Th22! 
b 1) a . 

Thus, DQJ!!!IE~a is an a p propriate union of those constants 
which we might expect to pri nt and ci~!YE~o is a union of the 
corresponding •variables•. 

It is now perhaps conven ient, for ou r discussion, to 
suppose that there is a •mode-declaration• 

D!Q~~ .Ef!~!!Y.E~ = uni~.!!(QB.!.!Y£~, .E£Q£(!i1~)), 
re~Q~IE~ = .Y.!!i2.!!<i.!!!IE~ · EEQ~C!i!~))c , 

although such a •mode-declaration • does not exist in the 
•standard-prelude•. With this in mind, we may now say that the 
•parameter• of oprinta is of the mode specified by a[ )££i]!!.IE~D 
a nd that of oreadc is that specified by c[ ]~~~!!!YE~a. This 
means, in particular, that the axe in cprint(x)a ~i l l be 
subjected syntactica l ly to the coercion of dereferencing to 
c£~~1a, uniting to aE!in t!IE~D and then rowing to a[ ]££iE!!J.E~o, 
whereas in aprint((x, y))a, the last coercion is not necessary 
since a(x, y)a is already of mode •row of•. In aprint(new 
page) c, the onew pagea is of a priori mode O.E.fQ~ C!il~)a and it 
is united to D.Ef!~!!IE~a and rowed to o[ ]E£!~.!.!YE~a. These 
particular coercions are of little concern to the programmer 
except perhaps that their understanding helps to prevent such 
errors as cprint(x, y)a. 

11.4 Standard output format 

We shall now examine what to expect of the appearance of 
•constants• on the standard output file ostand outc as a result 
of a •call• of oprinta. For this purpose, the mode specified by 

the hidden •indican 
our explanation 
re 1 • --~-' £2!£1, bool 
alonn ·f ----• ---~as, ~ appli 
output appearance t 
values of each of t 

. We shall also 
~f we are to give . 
that, in our envir~ 
?real widthc [ R.1 
~s •2• and omax ~h 
[R.10.S.1.l.m, 10:5 

is 

With these ass 
opri nt ( (ne 

o.o 
1 Q + 1 +0 
-3.400000E -3 A ABC 
The value -3 .40000 ' 
was not enough room 
value occupies 6 
constant 13 (creal 
complex value 28 an t 
each of these is 
unless we are at th• 

Multiple value: 
sp~cified bJ cout ' 
pr~n ted. For exaiiipii 
the result of . 

opr~n · 
+1 +2 

Also, in the reach •, 
result of aprint(n2) 

+ 5 +6 +. 
:~tually • the desc; 
a~ each of the •ur 

opr1nt((a, b, c, 
[R.10.S.0.2.c] to a 
ea~h of the element 
Pr1nted with the sta 
f?r . example, that 
W1th~n the •procedul 
of ]~.!!.e.JQ.Y!a [ R. 10. 
va~ues and all struc 
wh~ch are alread 
c[ 1~!!E12.Y!c before 

. The exceptions 
c~t7.!~ga has the 
cpr1nt("abcd") . . f . o ~s A 
~ ~t were treated 1 
3.4)o gives 

rather than + 1. 



a and read, 
the hidden 
I· we ca~l 
1e aeport 1n 
1t be used 
>nly for the 
me is used 
Ucant• with 

as follows: 
boola and 

ble;-and all 
Examples are 

b1)c. Note 

.ose constants 
mion of the 

!. iscussi on, to 

~)) , , 
exist in the 
w say that the 

c[ )~£i.!!.!ll.E~0 
,ad ty~~o. Th1S 
;"t(i) 0 ~ill be 
·eferenci ng to 
· o[ ]~Ein,!!l.E~c, 
" not necessary 
-In oprint(new 
c: (fi1~) c a nd it 
ntty~~o. These 
-the programmer 

prevent such 

he appear a nee of 
lltO as a result 
ode specified by 

An ALGOL 68 Companion 1 39 

the hidden •indicant• osi!Eloy!cc (R.10.5.0.1.a) is relevant to 
our explanation. It is a union of the modes specified by c!.n.!, 
£~!!, £~11pl, ~gg!, £~~£0 and c~!£iggc together with prefixed 
cl~~gos, if applicable. we shall be able to understand the 
output appearance then, if we consider the action of cprinto on 
values of each of these modes in turn. 

We shall also need some assumptions about the environment, 
if ve are to give illustrative examples. Therefore let us assume 
that, in our environment, oint widtho [R.10.5.1.3.h] is •5•, 
creal widthc [R.10.5.1.3.i] is •7•, oexp widthc [R.10.5.1.3.j] 
is •2• and omax char(stand out channel]c (the line length) 
ra.10.5.1.1.m, 10.5.1.3.e] is a64a (the same as this text). 

With these assumptions then, the result of the •call• 
oprint((newline, iru~, !.~1§~, 1, 0, -1, 1.2, 

0.0, -.0034, "a", "abc", 1i2))c 
is 
1 Q +1 +0 -1 +1.200000E +0 +O.OOOOOOE +0 ~ 
-3.400000E -3 A ABC +1.000000E +0 1 l +2.000000E +0 .~ 
The value -3.400000E -3 was printed on a new line becaus€ there 
was not enough room on the first line. Note that an integral 
value occupies 6 (oint width + 1o) print positions, a real 
constant 13 (creal width + exp width + 4o) print positions, a 
complex value 28 and a boolean or a character value 1 each. Also 
each of these is separated from the previous one by a space, 
unless we are at the beginning of a line. 

~ultiple values are also included in the united mode 
specified by DQ~!.!I£~o and therefore multiple values may be 
printed. For example, in the reach of [ 1:3 Ji!!i u1 = (1, 2, 3) o, 
the result of oprint((ul, 4))o is 

+1 + 2 +3 +4 
Also, in the reach of o[1:2, 1:2].!g_t n2 ((5, 6), (7, 8))c, the 
result of oprint(n2)o is 

+5 +6 +7 +8 
Actually, the description of cprinto [R.10.5.2.1.a,b] indicates 
that each of the •units• of a •row-display• c (a., b, c, d) c in 
cprint((a, b, c, d))o is first "straightened" (unravelled) 
[ R.lO. 5. 0. 2. c] to a value of mode specified by c[ )§i.!!!£12~!c and 
each of the elements of each of these straightened rows is then 
printed with the standard format discussed above. This means, 
for example, that the on2c in cprint (n2)c, given above, is, 
within the •procedure• oprintc, straightened from oQgii~]~c to 
c[J~i!!!.~2.!!ic [R.10.5.2.1.b, 10.5.0.2.a]. Thus, all multiple 
values and all structures (except for afQ!!J?bc and c§iii!!.9D, 
which are already in c§i!!!.£12.!!-ta) are straighten€d to 
c(l~!!£1Qutc before printing. 

The exceptions for o~i£!.!!gc and DfQ.!!!£!n are that, although 
c2tr,i!!go has the mode •row of character•, the result of 
cprint("abcd")o is ABCD and not A B C D, which would be the case 
if it were treated like other multiple values, and oprint (1.2 .! 
3.4) c gives 

+1.200000E +0 J+3.400000E +0 
rather than 



140 An ALGOL 68 Companion 

+1.200000F. +0 +3.400000E +0 
which would be the case if it were treated in the same way as 
the other structured values. 

One final point is that the appearance of the result of 
cprint(x) ; print(y)c is exactly the same as that of cprint((x, 
y))c. In particular, each •call• of cprintc does not start the 
output on a new line. A new line is started only when there is 
not enouqh room on the old line or when one of the layout 
procedures anew linea or anew pagec is called. 

11.5 conversion to strinqs 

For those who find that this standard format does net meet 
their needs, there are a few •procedures• which allow for some 
form of simple control over the appearance of the output, 
without resorting to the use of formats. These procedures 
convert integer or real values and their long variants to 
strings. They are oint string, real string, dec stringc and the 
same preceded by clongos, if applicable [R.10.5.1.J.c,d,e). 
Thus, if it is desired to print the integral v~lue a25a using a 
width of three print positions, this can be done by 

cprin t (int string (25, 3, 10)) c 
The second •parameter• of oint stringc is the string length and 
the third is the radix. The •call• 

cprin t (int string (25, 3, 8)) c 
would yield +31, because 25 = 3 * 8 + 1. Fer real values the 
value of creal string(3.14, 10, 3, 2)o is a+3.140E~OO• and the 
value of cdec string(3.14, 10, 3)o is a+00003.140a. In both 
•procedures•, the second •parameter• is the length, the third is 
the number of digits to the riqht of the point, and for creal 
stringo, the fourth •param~ter• is the length of the exponent. 

Notice that the value of 
a+0000025a, so that those who 
either accept what they get from 
output. Another possibility is to 
by defining a •procedure• like 
supp zeroc [R.10.5.2.1.q]. 

11.6 Standard input 

oint striny(25, 8, 10)c is 
require zero suppression must 

cprint(x)c or use formatted 
do the zero suppresion cneself 
the hidden •procedure• o~ sign 

The philosophy for unformatted input is that any reasonable 
r~presentation of the value to be read is acceptable, that it 
may appear anywhere on the line and may be cf ~ny width. What is 
expected for each value depends upon the mode of the •variable• 
to which it is to be assigned. Remember that the mode cf the 
•parameter• of areadc is a[ l!~~£.!YE~o, where D£~~Q!1.E~c is 
c~giQglin.!!lE~· EIQ~(fi}!))c. Thus, in aread((a, b, c))o, the 
c:tc is eithet. a layout •Froce:lure•, like anew linet, or a 
•variable• (or perhaps a •clause• which delivers a name of the 
appropriate mode). 

The modes we need to consider are those in the union 
specified by c~!!E!QY.!;a, each preceded by •reference to•, i.e., 
c~~! in!. £!! !~~!· £ef f2!~!. !~f EQQ!. !!! fE~£, £~! 2!I!ngo 

and their long versio 
convenience let us 
D§!!E!!na. We shall n 
turn. 

. In the reach of 
l~))c would be satisf 

3 
or 

+ 304 
The •procedure• cread 
from the current pos 
it finds as a value 0 
P?ssibility that, f 
·~ntegral-denotations 
and the first digit 
blanks may appear be 
characters may be pre . 
•long-symbol• is not 

In the reach c 
cread((lx, x))c would 

2 
or by 

6.789 
or by 

123-4.56 

e 

Note that the values c 
separated by blanks 
naturally do this. 

In the reach of ll 

b)) c would be satisfie 
3.456 e -3 i + 

or by -
.000345i60 

Observe -that althoug 
when necessary, there 
to 0 £Q.!!.e1c. If the •v 
£2~E1c, then it expect 
separated by a •plus-i 

In the reach of 
character from the inp 
character is a blan 
oread(cl)c will read 
and assign these to ac 
cf1o, then cread (cfl 
of line or one of the 
oterm of stand inc 
charact;;s are taken b 
W hie he ver bound is f 
of them are flexible 
!!!.! )£1!~! sill yo, tht 
lower bound of •1• for 
terminators as for ex . 



he sa me way as 

he result of 
of opri nt ( (x, 

ot start the 
when there is 

f the layout 

: does net meet 
low for some 
of the output, 
~se procedures 
mg variants to 
tringo and the 
) • 5. 1 o 3 o C 1 d 1 e ] • 
a •2 5 • using a 
by 

ring length and 

al values the 
40E+OO• and the 
140•. In both 
. h, the third is 
:, and for creal 
the exponent. 

,, 8, 10)o is 
;upp ression must 

use formatted 
Jpresion c neself 
)cedure• o'J sign 

t any reasonable 
table, that it 
y width. What is 
f the •variable• 
e mode cf the 
e o£~~.9t1E.§D is 

b, c)) o, the 
onew linet, or a 

; a name o f t he 

Jose in the union 
renee to•, i.e., 
~~~£· £~f ~t.Iingn 

An ALGOL 68 Companion 141

and their long versions like a~~! !Qng £~~!a and so on. For
convenience let us suppose that this union is specified by
D§!!:e!!na. We shall need to consider each of these modes in
turn.

In the reach of a!~! i, !Q!!g int lia, the •call• aread((i,
li))a would be satisfied by two •integral-denotations• like

3 -2
or

+ 304 0000005
The •procedure• creadc looks for the first non blank character
from the current position on the input file and interprets what
it finds as a value of the required mode. It allows for the
possibility that, in the case just cited, there will be two
•integral-denotations• with zero or more blanks between the sign
and the first digit, if a sign appears at all, but that no
blanks may appear between the digits. Note that the same set of
characters may be presented for ai!!!D as for c!Q!!~ iB!c (a
•long-symbol• is not used).

In the reach of D£~~! x, .!Q!!g re~! lxa, the •call•
aread((lx, x))c would be satisfied by

2 3.45
or by

6. 789 e + 2 .00003
or by

123-4.56
Note that the values on the input file need not necessarily be
separated by blanks or commas, although most people would
naturally do this •

In the reach of D£Q£E1 z, bog! ba, the •call• aread((z,
b))a would be satisfied by

3.456 e -3 ! + 7.69 1
or by

.000345!6Q
Observe that although creadc will widen from cinta to c£~~!a,
when necessary, there is here no widening from ~ii~~ or crealc
to D£Q£EJc. If the •variable• to be assigned to is of mode of~~
£Q!.E.!c, then it expects two values acceptable as a~~.!c and
separated by a •plus-i-times-symbol•.

In the reach of a£~~£ cc, cread(c)c merely reads the next
character from the input file and assigns it to cca even if that
character is a blank. In the reach of c[1:10)£~~I c1c,
aread(cl)a will read exactly 10 characters, including blanks,
and assign these to ac1a. If however, we have c(1:3 fl.§!]£B~I
cf1a, then cread(cfl)a reads characters until it finds the end
of line or one of the characters which belcngs to the string
cterm Q! stand ina [R.10.5.1.mm], whereupon the preceding
characters are taken to be those to be assigried to ccf1c.
Whichever bound is flexible is then adjusted suitably. If both
of them are flexible, e.g., in the reach of a[O !1~~: 0
!l~!]£h~£ sillyc, the •call• cread (silly) a will result in a
lower bound of •1• for asillyc. The programmer may specify the
terminators as for example in cterm Q~ stand in := "?!"a, which

142 An ALGOL 6B Companion

changes the set of terminators to"?" or"!".

For multiple and structured •variables• in the union
oig!!E!n, the first step is to straighten to o[]§i~El!no, where
D§!~E!ino is the union of modes discussed above. Thus, in the
reach of o[1:3, 1:2]£g~1 x2, §!£]£!(!E! a, QQQ} b) co, the
•call• oread((x2,c)) o would be satisfied by

3.1 .6 4.2 .7 SQ.

11.7 String to numeric conversion

The •procedure• oreado must of necessity convert character
strinqs to integral or real values, and in doing so it makes use
of three standard •procedures•, cstring int, string decc and
ostrinq realc [R.10.5.2.2.c,d,el. These •procedures• are not
hidden. The programmer ma y use them himself. The first
•procedure•, ostring into, converts a given string to an
integral value. It assumes that the first character of the
string is a sign. Any character which is not a (hexadecimal)
digit, e.g., a space, is treated as a 0. Thus the value of
ostring int ("+~~23", 10)c is •23• (the second parameter is the
radix). The •procedure• cstring decc converts a •variable-point­
numeral•, e. g., c"+2.3450"c, to a real value and ostring realo
converts a •floating-point-nume ral•, e.g., o"+ 2. 345e-2 11 c to a
real value. The value of cstring dec ("+2.345")o is •2.345• and

· that of cstring real(11 +2.34 50e- 1")n is •.2345•. These
•procadures•, although ava i lable, are not likely to be useful
for input since creadc itself has all the flexibility needed.
However, thay may well be used for internal manipulation of
strings.

Another •procedure• which may be mentioned here is cchar in
stringc (R.10.5.1.2.n]. It has three •parameters•; the first is
of mode •character•, the second of mode •reference to integral•
and the third of mode •row of character•. The •procedure•
delivers a boolean value which is • tr ue• if the character, which
is the first •parameter•, is fou nd i n the string, which is the
third •parameter•, in which case i ts position is assigned to the
•integer-variable•; otherwise, t he value delivered is •false•
and no assignment is made. rhe result of •char in string ("+", i,
"x~+~y")c is therefore •true• and the value •3• is assigned to
cia.

11. 8 Simple file enquiries

For any file, it is possible to make simple enquiries
concerning the current position in the file. There are three
•procedures•, cchar number, line numberc and opage numberc
fR.10.5.1.2.v,w,x], each yielding an integral value, the three
coordinates of the cbookc. In the case of the standard input
file, the •calls• ochar number (stand in), line number (stand in) o
and opage number(stand in)o should each yield the value •1•
after the •call• cread ((c, back space))c, if this is the first
call of oreado and is in the reach of cchar co. Notice that
these •procedures• deliver integral values ~i~- not names, so

An

that the y ar e for eng
positio n in th e fi le.

There a re a lso th~
and cfi l e ended o [a. 1•
appro pr i ate boolean val
made bet wee n cfile e ~
capacity has been e
(R.10. 5.1 . 2.k] , which .
~he.file has bee n exhau:
1 f 1t is a card reader
always to be •false :
become •true. each time'
particular j ob. The •c;
always yield • false., bE
[R.10.5.1.1.j, 10.5.1.3,
outc is not an input f J
become true when the pac
or whe n the box of pape]

11.9 Othe r files

It is worthwhile nc
~s cput (stand out, x) c
1n, x)o; in fact, this j

d~fined (R.10.5.2.1.a,
f1le is availabl e , say i
fc, then what we ha~
standard fil es applies a
oput(f, x)c and cgetj
closed) by the programme
another chapter.

Another standard
ope~ed a?to matically, is
sav1ng 1ntermediate re
•program•. When the el
will be los t, since the
by the •standard-postlud
are cwrite binc and or
owrite binc is o[]out
c[]iQ!YE~c. For exampL
want temporarily to save
this could be accompl
array can th e n be recall·
say cfo, is available
x1)c and oqet bin(f, xl);
then thes e two • c alls• m:

11.2 Print and read

a) Is oprint (new page, DE

the union
where

the
the

.Hnc,
s , in

b) co,

t character
i. t makes use
ing decc and
s • are not

The first
ring to an
act er of the
he xadeci ma 1)
t he value of
ter is the
iable-point-

tstri ng rea lc
)e-2" c to a
; . 2. 345• and
34 5•. These
to be useful

lity needed.
nipulation of

e is cchar in
the f i rst is

t o integn.l•
•procedure•

tra c ter, which
which i s the

:; signed to the
l is afalsea
string (" +" , i ,
is ass i gned to

ple enquiries
~ here are three
cpage numberc

tl ue, the three
:; tandard input
nber(stand in)c
l the value ala
is the first

cc. Notice that
not names, so

An ALGOL 68 Coapanion 143

that they are for enquiry only and cannot be used to alter the
position in the file.

There are also three •procedures• cline ended, page endedc
and ofile endedc [R.10.5. 1.2.h,i,j], each of which delivers an
appropriate boolean value, but a careful distinction must be
made between cfile endedc, which tests whether the maximum
capacity has been exceeded, and clogical file endedc
[R.10.5.1.2.k], which tests whether the usable information in
the file has been exhausted. In the case of the file cstand inc,
if it is a card reader, then cfile ended(stand in)c is likely
always to be •false a, but clogical file ended (stand in) c may
become atruea· each time we reach the end of the data for a
particular job. The •call• clogical file ended(stand out)c will
always yield afalsea, because cget possible(stand out channel]c
[R.10.5.1.1.j, 10.5.1.3.b] is likely to be afalsea, i.e., cstan:l
outc is not an input file. But cfile ended(stand out)c may well
become true when the page limit for a particular job is reached,
or when the box of paper is exhausted.

11.9 Other files

It is worthwhile noticing now that cprint(x) a is the same
as cput(stand out, x)c and cread(x)o is the same as oget(stan:l
in, x)o; in fact, this is the way that cprintc and areadc are
defined [R.10.5.2.1.a, 10.5.2.2.a]. This means that if another
file is available, say in the reach of the •declaration• o!!l~
fc, then what we have said about unformatted transput on the
standard files applies also to the file cfc by using, e.g.,
cput(f, x)c and oget(f, x)c. Such files must be opened (and
closed) by the programmer, but this is the subject matter of
another chapter.

Another standard file which is always available, i.e., is
opened automatically, is ostand backo. This file may be used for
saving intermediate results during the elaboration of a
•program•. When the elaboration is completed, this information
will be lost, since the file is locked [R.10.5.1. ii, 10.5.1.2.t]
by the •standard-postlude•. The two relevant •procedures• here
are cwrite binc and cread bino. The mode of the •parameter• of
cwrite binc is a[]Q_ytt1E~o, and that of cread bino is
c[l!!!!:YE~o. For example, in the reach of c[1: n lr~al xlc, if we
want temporarily to save the values of a rather large array,
this could be accomplished by the •call• cwrite bin(x1)c. The
array can th e n be recalled by cread bin(x1)c. If another file,
say ofc, is available, the same could be done by oput bin(f,
xl)o and cget bin(f, x1)o, and if the file cfc is not lock e :l
then thes e two •calls• might appear in different •programs•.

Review questions

11.2 Print and read

a) Is cprint (new page, new line) a a •call•?

144 An ALGOL 68 Companion

b) Is aprint(~i!)c a •call•?
c) What is the result of aprint(get possible(stand in

channel])c?
d) In the reach of cref real xx := .loc £~~1 : = 3.14a, what is

the result of aprint(xx)a?
e) In the reach of are! £_g~! xx := .loc £_g!! := 3.14c, llhat is

the result of cprint(£~! £_g!!: xx)a?

11.3 Transput types

a) what is the result of cpri nt (!Q!; i !1I 2 to 10 QQ 3)a?
b) Can anile be coerced to a[].E£.!!!!.!Y.2~a?
c) In the reach of 0£~! !:~~1 xxa, can cxxc be coerced to

·a[]!:~.2Q!I.2_go?
d) In the reach of a§!E.!!f!(!;~! £ next, i.!!! n) s :.: <nil. 2) c,

what is the result of cprint (s) c?
e) In the reach of a!,Q~.2! fa, is oread (f) c a •call•?

11.4 Standard output format

In the following, assume the same environment as given in
section 11.4.

a) What is the result of cprint(("?", int llidtb))a?
b) What is the result of cprint(("?", space, "abc~)?
c) In the reach of cref real xx := lac real := 3. 14o, what

coercions occur to cx'ic in-cprin t (("?"-;- xx))c and llha t is
printed?

d) How many real values can be printed on a line?
e) How many integral values can be printed on a line?
f) Is the result of cprint(("a", "b", "c"))c !BC or ABC?

[B] w. Brown, The eros
University of Calgary

[G] G.Goos, Soae p
Iapleaentation, lorth

[H] J.E.Hopcroft and
Relation to Automata,

[Kn] D. E. Knuth, The
Fundamental Algorithm

[Ko] C.B.A.Koster, On
Feb. 1969, pp. 86-89

[!] L.!eertens, On t~
infinite modes, ALG1
(1830. 3. 4).

[!] P.laur, Revised R1
Co••· Assoc. Coaputin•

[Pa] c. Pair, Concernil
AB 31.3.2, !!arch 1970 .

[P] PL/I Language Ref•

[R] A. van iijngaar<
Koster, Report on the
Mathematik, 14 (1969)

[SW] H. Schorr and 1
procedure for garbage
Coam. Assoc. Compotin!

[II] B. WGssner, on
ALGOL 68 Impleaentat~

[Z] !ary Zosel, !ode <

·stand in

what is

a, '<~hat is

c?

;oerced to

C!!H, 2) c,

given in

3. 1 ll tJ , w ha t
rt d '<lhat is

?
A B C?

An ALGOL 68 coapanion 145

References

[B) i.Brovn, The cross-referencing of a van Wijngaarden graaaar,
DniYersity of Calgary, 1969.

[G] G.Goos, Soae problems in compiling ALGOL 68, ALGOL 68
I apl e aentation, Jorth-Holland, 1971, pp. 179-196.

[H] J.E.Bopcroft and J.D.Ullman, Formal Languages and their
Relation to Automata, Addison Wesley, 1969.

[Kn] D.E.Knuth, The Art of Computer Programming, Vol. 1,
Fundamental Algorithms, Addison Wesley, 1968.

[Ko] c. B.A. Koster, On infinite aodes, Algol Bulletin, No. 30,
Feb. 1969, pp. 86-89 (18.30.3.3).

[M) L.Meertens, on the generation of ALGOL 68 programs involving
i nfinite modes, ALGOL Bulletin, lio 30, Feb. 1969, pp. 90-9 2
(AB30. 3. q).

[R] P.Maur, Revised Report on the Algorithmic Language ALGOL 60,
Coaa. Assoc. computing Machinery, 6(1963) pp. 1-77.

[Pa] C.Pair, Concerning the syntax of ALGOL 68, Algol Bulletin,
AB 31.3.2, ftarch 1970.

[P] PL/I Language Reference Manual, IBM Form C28-8201-2.

[R] A. van Wijngaarden, B.J. Mailloux, J.E.L. Pec k and C.H.A.
Koster, Report on the Algorithmic Language ALGOL 68, Numerische
Mathematik, 14 (1969) pp. 79-218.

[SW] H.Schorr and i. ft. Waite, ln efficient machine independent
procedure for garbage collection in various list structures,
Coam. Assoc. Computing Machinery, Vol. 10 (1967), pp. 501-506.

[W) H. w~ssner, on identification of operators in ALGOL 68,
ALGOL 68 Implementation, Borth Holland, 1971, pp. 111-118.

(Z) Mary zosel, Mode classification, Univ. of Washington, 1970 .

146 An AlGOL 68 Companion

Answers to review questions

1.1 a) It ends with •symbol•. b) rhree, •label-symbol•,
•cast-of-symbol• and •up-to-symbol•, unless one observes that
the •label-symbol• is in italic, and the other two in normal
type. c) Yes, e.g., o.o, which represents a •point-symbol• and a
•completion-symbol•. d) It is a representation of the •open­
symbol•, but, by extension 9.2.g, it may be used in place of
cf c.

1.2 a) An internal object which is a real value. b) A
•real-denotation• (amonqst other things). c) It is an external
object. d) D~£Y~D possesses •true ••

1.3 a) No. b) Yes. c) Ho, it is an internal object. d) No,
i.e., not at the same time, but in the course of time - yes. e)
No.

1. 4 a) No. b) Yes, a •collateral-declaration• [R. 6. 2. 1.a].

1. 5 a) rhere are four classes: integral
values, truth values and characters. b) Yes, the
c) The mode.

values, real
truth values.

1.6 a) The mark ": 11 is read as "may be a", ";" as "or a"
and 11 , 11 as "followed by a". b) Yes.

1.7 a) Yes, e.g., o123o and o000123o. b) No, but it is a
•formula•. c) Yes. d) No, not if this value would exceed cmax
intc [R.10.1.b].

1.8 a) Yes, e.g., possibly o2.34o and c23.4e-1o. b) No. Oh,
please no. c) No. d) Yes. e) No, but it is a •formula• [R.B.4].

1.9 a) No. b) Yes.

1.10 a) Infinitely many. b) As many as he likes, but always
a finite number.

1.11 a) No, it is a •character-denotation•. b) Yes. c) •row
of character•.

1.12 a) No (R.2.2.3.1.b]. b) •structured with row of boolean
field letter aleph•. c) •format•.

1. 13 a) •row of character•. b) •reference to real•,
•reference to integral• c) No. d) Six. e) No.

2.1 a) No. b) Yes. c) c_E~! !!'!! []£h~£D. d) Yes. e) Yes. f)
No. g) No, except for •nil•. h) No, a •declarer• specifies a
mode.

2.3
No.

a) Hone. b)

2. 4 a) Ho, but
value. b) Yes. c) Ia.
time, but in the cout

2.5 a) Yes, but
No, but the value r
be changed. d) c!Q£[1

2.6 a) No. b) Ye
to-reference-to-integ

2.7 a) Yes. b) y ,

2.8 a) oref ref 1

!Q£ £~~.!. ~! !~~!-r ;
£~!!! y ®. loc !~~! :=
o+o has 1ts usual me~

2.9 a) No. b) Ye~

2.10 a) Yes. b)
reference-to-real•. f)

2.12
No.

a) The eye if

2.13 a) the one is
is a •reference-ta-l
•constant• and cmo is

2 • 1 4 a) F ou r • b) B
is equivalent to oj :=
real•. e) •reference-t

3.1 a) Ho. b)
•expression• may posse:

3.2 a) No. b) Fiv•
call• and •void-cas~
COS (X + pi/2) , COS, X,
depending on the mode c

3.3 a) ol, ca, ft
of-integral•. d) Yes. e

3. 4 a) Yes. b) Yes
c) Yes. d) Yes. e) a35,

3.5 a) No. b) res.

3. 6 a) The same as
value •true• only vhe

symbol•,
ves that

normal
1• and a
e •open­
lace of

. ue. b) A
external

t. d) No,
yes. e)

• 2.1.a].

es, real
values.

as "or a"

it is a
1ceed cmax

b) No. Oh,
[R.8.4).

1Ut always

!5. c) •rov

of boolean

to real•,

e) Yes. f)
pecifies a

An ALGOL 68 Co•panion 147

2.3 a) Hone. b) aloe £hare. c) o!Q£ ~Q2!c. d) Ho. e) No. f)
No.

2.4 a) Mo, but it possesses a name referring to a real
value. b) Yes. c) Ho. d) No. e) Ho. f) No, i.e., not at the same
time, but in the course of time - yes.

2.5 a) Yes, but not the saae instance [R.2.2.1]. b) No. c)
No, but the value referred to by the name possessed by cxo may
be changed. d) o!Q£[1:3]E£~£ !~~!o.

2.6 a) No. b) Yes, in the extended language. c) •reference-
to-reference-to-integral•. d) o[1:3]~Q£ £~~! po •

2.7 a) Yes. b) Yes. c) Ho. d) Ho.

2.8 a) cref £~! real xx = !~£ !ef £~!o. b) ofef £~~! x =
!2£ !~!, ~! !~~! Y = lof ~~!o. c) D£~{ £~al x = !Q£ f~~!. !~{
!~~! y ® loc !~~! := 3.14a. d) It is not possible; moreover, if -
o+o has 1ts usual meaning, then this is not a •declaration•.

2.9 a) No. b) Yes. c) No. d) Yes, but a rather foolish one •

2.10 a) Yes. b) Yes. c) No. d) ay + 2o. e) •reference-to-
reference-to-real•. f) No.

2.12 a) The eye is dereferenced and the o3.14o is not. b)
No.

2.13 a) the one is an •integral-aode-identifier• but the omo
is a •reference-to-integral-mode-identifier; i.e., one is a
•constant• and oma is a •variable•. c) No.

2.14 a) Four. b) Both capo and ampa are dereferenced. c) It
is equivalent to aj := j + 1o. d) Yes. amio. It's mode is •long­
real•. e) •reference-to-long-real•.

3.1 a) No. b) Yes. c) c (a + (b Q! (c(d)))) - eo. d) An
•expression• may possess a value but a •statement• cannot. e) Yes.

3.2 a) No. b) Five, •mode-identifier, denotation,
call• and •void-cast-pack•. c) oa[i], a, i, c, sin(x),
cos(x + pi/2), cos, x, pi, 2o. d) Ho. e) It could be
depending on the mode of oao [R.9.2.g].

slice,
sin, x,
either,

3.3 a) cl, ca, fo. b) •reference-to-real•. c) •rov-of-rov-
of-integral•. d) Yes. e) Jo.

3.4 a) Yes. b) Yes, its mode is •reference-to-row-of-real•.
c) Yes. d) Yes. e) o35, item ~! a, i + n * 2, i +:= 2o.

3.5 a) No. b) res. c) No. d) res. e) Yes.

3.6 a) The same as that of o(2,3)o. b) It possesses the
value .true• only when ox2(3,1] = x2[2, 1]c. c) •2•. d) •2•. e)

148 An ALGOL 68 Companion

No, because ci := lc is not a •tertiary• and therefore not a
•lower-bo und•.

3. 7 a) Yes. b) No, it is a •deprocedured-coercend•
[R.8.2.2.1.a]. c) No, but ccos((x > 0 I x 1 pi/2))c is a •call•.
d) When the mode of cac is •procedure with ~1 parameter
reference to M2• where •M1• and •M2• are terminal productions of
MODE. e) When the mode of ca c is •procedure-w i th-M1-parameter­
procedure-with-M2-parameter-M3•, i.e., cac is a •procedure• with
one •parameter• which delivers a •procedure• with one
•parameter•, and the mod.es of cbc and oco are •M1• and •M2•
respectively.

3.8 a) Yes. b) No, c (: x) c has no mode. c) Yes, provided
that the mode, after soft coe rc ion, of oxc is •reference-to­
procedure-void•. d) Yes. e) No (R. 8 . 2 . 3.1], but DE£2~ p := (: x
:= 3.14)c is a •declaration•.

3.9 a) No. b) Yes. c) No. d) Yes. e) When the mode of cbc
is structured, has a field se lec ted by cac whose mode is
•reference- to-M1• where •M1• i s the a posteriori ~ode of ceo, or
when cbc is a •variable• a nd will refer to structured values
that have a field selected by cac whose mode is M1.

3.10 a) No. b) No, it is a •field-selector• (R.7.1.1.i]. c)
ca 2f (bfc)), e Q!(g(x))c. d) No, o(a Q! b)cis not a •field­
selector•. e) Yes, it could be.

3.11 a) Yes. b) afalse• (if t he value of obits widtho is
a3a). c) a-4•. d) No, the lef t •operand• of the •operator•
c+:=c, as declared in the •standa r d-prelude•, must possess a
name. e) •falsea.

3. 12 a)
d) No, DE~Qc

No. b) No, oi := i + 1o is not a •tertiary•. c) No.
(:random)o is. e) It is an •assignation•.

3.13 a) afalsea. b) atruea . c) a truea. d) No, o3.14c does
not possess a name. e) Yes.

3.14 a) No. b) It looks li ke one, but o3.14o cannot be
strongly coerced to an i ntegra l value. c) An •identity­
relation•. d) No, because c[1: 1]E~~Jc is not a •virtual­
declarer•. e) No, c!ef in! : i i c is not a •tertiary•.

3.15
None.

a) None. b) Eleven. c) A •constant•. d)

4.1 a) The same as that of o3 i Oo. b) No. c)
e) Yes. f) Yes.

•real•. e)

No. d) Yes.

4.2 a) •5•. b) Some undefined integral value. c) •11a. d)
c!! p then a elsf q !Q~! r 1E~n b ~1se c !!c. e) c(a I (b I =
I (d I e-~-~!!E-))J ~!iE)c.

4.3 a) No. b) cif, £~2~c and c (c. c) •4•. d) •2•. e) No.

4.4 a) llo. b) 1
often, or until a j u
it. d) Yes, zero
third occurrences of
1c is not an •assign
The last three
occurrence, but the
first occurrence.

4 • 5 a) Yes. b)

4.6 a) No. b)
e) Yes, e.g., if the . i +:= jo. •
4.7 a) Yes. b)
:= 2 ; s . 1: n := 1

4. 8 a) Seven.
•reference-to-integr

5.1 a) No, D!~!!
a)realo is not a •v
2 *-randomo. d) aE!Q
b)o. e) cpro~ recip

5.2 a) No, unl
operation which deli
= X + 1, ~! b = f
a) o. e) • (int n = s
!~~! (n <-; 1 a1(

5.3 a) The valu
numerical analysis.
not a call, since cr
declaration•. e) •2~

5.4 a) c~!Q£
but in most applicat
* aa vould be suff~
in ALGOL 60, the sid'
but in a b *: = 2 * ao

5.6 a) A •con
esc. c) Because ogc
•variable• in its 1
for it is used only
that of cll.!.QQOOQa.

6. 1 a) A prio:
position. b) Strong,
Widening.

6.2 a) Eight.

Jt a

:;end•
tll•.
11eter
ns of
eter-
vith

one
•M2•

vided
e-to­
(: X

1f cbo
le is
:c, or
ralues

J. c)
field-

n c is
rat or•
ess a

c) No.

does

lOOt be
!Otity­
.rtual-

.•. e)

:l) Yes.

,. • d)
(b I ::::

No.

ln ALGOL 68 companion 149

11.11 a) llo. b) llo. c) Yes, oea is elaborated infinitely
often, or until a jump occurs to a •label-identifier• outside of
it. d) Yes, zero times. e) Yes, zero times. f) The second and
third occurrences of cia identify the first, but oi := 2 * i +
1o is not an •assignation• since aio does not possess a name. g)
The last three occurrences of oio identify the second
occurrence, but the third and fourth occurrences identify the
first occurrence.

11.5 a) Yes. b) No. c) Yes. d) Ho. e) No. f) No.

11.6 a) lio. b) l!lo. c) No. d) The same as that of o"abcde"o.
e) Yes, e.g., if the order of elaboration happens to be cj +:= i
; i + := jc.

4.7
:= 2

a) Yes. b) Yes. c) No. d) Yes. e) o(x Qf 1 I 1)
s • 1: n : = 1 ro.

4.8 a) Seven. b) •reference-to-row-of-in tegr al•.
•reference-to-integral•. d) Four. e) None.

n

c)

5.1 a) No, D!~~! J!!Q.fD is not a •declarer•. b) No, c (fg!!l
a)f~~!o is not a •virtual-plan• [R.7.1.1.x]. c) DJ!£Q£ ~~~! r2 =
2 * randoma. d) DE!Q.f max = (~! a, b) ~~~! : (a > b 1 a
b)a. e) apro£ recip = (£~! £~!!! a) : a := 1 1 ac.

5.2 a) No, unless a*a has been redeclared and possesses an
operation which delivers a name. b) D£ef[]!~!!! x1a. c) D(f~~! a
= x + 1, ~! b = y ; a* b)o. d) D(£~!!! a= ~~il! ; ~~~!: a*
a)o. e) •(!B~ n = ~~!J!, !B! m =~~!I! ; ~~.f[1:n]f~~! a1 = 2!!E
f~~! (n < 11 1 a1[n] 1 a1[a])) •·

5.3 a) The value is voided. b) •4.6•, in the sense of
numerical analysis. c) That of aye. d) The object ap(x, y)c is
not a call, since Df~! re.f ~! a = xa is not an •identity­
declaration•. e) a2.2•, in the sense of numerical analysis.

5.4 a) a~f~£ p = I!~! a, E!Q£ r~t in~ b) : b •:= 2 * aa,
but in most applications DE£~ p = (in! a, £~! in! b) : b •:= 2
* aa vould be sufficient. Note that since abo is passed by name
in ALGOL 60, the side effects of ab := b * 2 * aa occur twice
but in ab •:= 2 * aa they occur only once.

5.6 a) A •constant•. b) Because
osa. c) Because ago is a •constant•
•variable• in its last •paraaeter•. d)
for it is used only in the •formula• at
that of alll.QQOOQa.

no assignment is made to
and agrowa requires a
It's value is irrelevant
Q! ~ta. e) The same as

6.1 a) A priori mode, a posteriori mode and syntactic
Yes. d) No. e) position. b) Strong, firm, weak and soft. c)

Widening.

6.2 a) Eight. b) Dereferencing and widening. C)

·-

150 An ALGOL 68 Companion

Dereferencing and deproceduring. d) Rowing. e) Eipping.

6. 3 a) Dereferencing (four times). h) Dereferencing (twice)
c) Dereferencing, dereferencing and deproceduring. d)
Dereferencing, deproceduring and dereferencing. e) B34a, 71b ,c,
61e, B1a,b,c,d, B20d, 822a, 860a, 41b,c, 302b.

6.4 a) Deproceduring and uniting. b) No. c) A routine. d)
No. e) No, crandomo is of a priori mode • proced ure-real•, it
cannot be procedured to •procedure-void• (R.8.2.3.1].

6. 5 a) No. b) Hipping. c) Widening of c5c. d) Deproceduring
and rowing. e) None, this is not a •cast• since rowing cannot be
followed by uniting [R.8.2.4.1.b].

6. 6 a) Dereferencing and deproced uri ng. b) Firm. c) weak.
d) Dereferencing of crr1xc twice (not thrice). e) Soft.

6.7 a) •Base, cohesion, formula, confrontation•. b) cb, a
2! b, x, 2, x := 2, x, y, 3, y + 3, x := y + 3c. k=-T Yes, but it-s­
~1~&-a r a t:i: on hl- \iBdefined-s iflce t he de£eferencing of a •nih.il• is­
~ adefined (R 8.2.1.2 Ste~ 2]~ d) Yes, assuming the •declaration•
cf~i fea± xxc. e) No, hipping cannot occur in a soft position.
c) o~:=_·_o I,.. ~o-·~~. ~ a!!!n...;,w.l\r"'- ·~-~-u.c..U:-.
6.9 a) 834a, 71b, 421b,c, 61e, 81a,b,c,d, 820d, B25b,a,
B21a, 860a, 41b, 302b. b) No, there is no deuniting coercion. c)
74a, 54e, 71b,w,aa,z; 41b, 302b; 74b, 61e, 81a, B20d, B23a,
830a, 834a, 71z; 61e, 81a, 820d, 828a, B30a, 831a,b, 81b,c,d,
820g, 860a, 41b, 302b; 831c, 61e, 81a,b,c,d, 820d, 825a, 860a,
511a, 303c,d. d) 61e, 81a,b,c,d, 820d, 828b, 822a, 860a, 41b,c
302b. e) No, hipping cannot occur in a firm position.

6.10 a) No. h) Yes. c) •real•. d) •real• or •procedure real•
or •union of integral and rea l • or •union of integral and real
and boolean• etc. e) No.

6.11 a) No. b) cpxc is softl y deprocedured and oxxc is
strongly dereferenced. c) opxc is s oftly deprocedured and cgQ_!Q
ko is strongly hipped to •reference-to-real•. d) Yes. e) No.

6.12 a) cx1c is weakly coerced, c2o is strongly and
then rowed to •row-of-real•. b) Yes, strongly-weakly
c) Yes. d) Yes. e) orandomo is strongly deprocedured
and cO i 2o is weakly coerced. ~cwJ._.:.to.._,.DIW'Iie.,

• ~~ ·""0~

6.13 a) No. b) No. c) Yes, firmly-strongly. d) Yes. e) No.

6.15 a) Yes. b) Yes, the balanced mode is •reference-to­
real•. c) No, it cannot be balanced. d) c4 i 5.6o is firm, the
others strong. e) No. ~ ..4 ~a...tL.I'\.~X~Ib A>A·

6.16 a) The obje-~m +:= 1o is interpreted as om := m + lc
so omo is dereferenc,~o~ce, om +:= lois dereferenced as the
left operand of o>oA b) This is equivalent to D£!! !D! cl = 12£
int := am := abs amo. First came is dereferenced to •integral•
and the absolute value of this integer is found. It is assigned

to came. Then a nam
cam := abs amo is
to by cam~ is assi
possess the name.
same name as that p
repetition of the
occurrences of caic
d) This is the
FORTRAN program. It
not permitted for t

7.1 a) Yes,
Yes, but rather use

7.2 a) lfo, • in
character and bool
firm, so the ole
•boolean•. d) Yes
that it is in the
•operator• o+o.

7. 3 a) •true•.
xo is not a •tertia

7. 4 a) Yes,
•true•. c) Yes (R.4
i)YDiQ~(in!, E!~!l
j = i J j I X)) c.

7.5 a) •4•. bJ
it should be osema
value of cue--Is
expression is that
hipped and must
•tertiary• of a
[R. 8. 3. 2. 1. a) • f)
answer to e).

8.1 a) No, it :
((- (- (ab§ i)

•confrontation•. f)

8.2 a) No, o:::::
• iden ti ty-relator•.
c) No, the token
permits c?o as a •d)
was D2EiQEi!l ? = 6,

8.3 a) No, o:::: :
relator•. b) No, 1
with one or two •pal
operator• [R.3.0.4.
Yes. e) o.Q£ (f!.! HJ

8 • 4 a) • (f!~! ~

ng (twice)
ing. d)
4a, 71b,c,

utine. d)
-real•, it

roceduring
cannot be

c) Weak.

.b)ob,a
s-;- b u t -i-t-S­
uihil • is­
claration•
)Si ti on. . . .
, 825b,a,
:!rcion. c)
~Od, 823a,

81b,c,d,
~Sa, 860a,
)a, 41b,c

lure real•
l and real

cxxo is
tnd og.Q_!Q
!) No.

.dened ani

~-
ld widened

(~~ ..
e) No.

'rence-to­
irm, the
I•

:= m + 1o
as the

c1 = !2S:
integral•
assigned

An ALGOL 68 Companion 151

to oamo. Then a name is created by o!Q£ i~1c, the •assignation•
cam := ~bs amo is dereferenced and the integral value (referrei
to by oamo) is assigned to this name. Finally oc1o is made to
possess the name. c) The identifier oaio is made to possess the
same name as that possessed by oa[i]o. This happens for each
repetition of the repetitive statement, in which there are five
occurrences of oaio, thus saving time on subscript calculation.
d) This is the position of the statement number 30 in the
FORTRAN program. It is redundant in ALGOL 68, but ol30: gEQD is
not permitted for there is no empty statement. e) 1

7.1 a) Yes, its value is •false• [R.7.1.2.c Step 8]. b)
Yes, but rather useless. c) •true•. d) Yes. e) Yes.

7.2 a) No, •integral• mode cannot be united to •union of
character and boolean•. b) No, in R.8.2.4.1.a, •strong• goes to
firm, so the o1o cannot be widened. c) Either •real• or
•boolean•. d) Yes, and its value is •false•. e) Yes, provided.
that it is in the reach of a suitable declaration of the
•operator• o+o.

7. 3 a) •true•. b) afalsee. c) etruea. d) Yes. e) No, ex :: =
xo is not a •tertiary• [R.8.3.2.1.a] •

7.4 a) Yes, its value is •false•. b) Yes, its value is
•true•. c) Yes [R.4.4.3.c,d]. d) Mo. e) D.E~Q£ sqirt -= (!!!!
i) l!!!.!Q!!. (int, !:~~!) (£eal x = sqrt (i) i~1 j = ~QJ!!!.~ x ; (j *
j = i 1 j I X)) o.

7.5 a) •4•. b) Either •7• or .a. or •9• (R.10.4.2]. c) No,
it should be o~g~~ p = /1o. d) Yes, surprisingly, and if the
value of ouo 1s of •boolean• mode, then the value of the
expression is that of oho. e) No, because a •skip• can only be
hipped and must therefore be in a st.rong position. ·rhe right
•tertiary• of a •conformity-relation• is of no sort
[R.8.3.2.1.a]. f) No, a •jump• can only be hipped (see the
answer to e).

8.1 a) No, it is a •confrontation•. b) Yes. c) o(x + (-y))
((- (- (ab~ i))) over 2) o. d) Nine. e) No, it is a

•confrontation•. f) •2 •·

8.2 a) No, o:=:o is not a •dyadic-indication•. It is a
•identity-relator•. b) No, the •token• on the right must be > 0.
c) No, the token must be < 10. d) Yes, if the implementation
permits o?o as a •dyadic-indicant•. e) No, perhaps the intention
was D2!:iQ!:i!l 1 = 6, ! = 6o.

8.3 a) No, o:=:o is not an •operator•. It is an •identity­
relator•. b) No, the •actual-parameter• must possess a routine
with one or two •parameters•. c) No, o*o is not a •monadic­
operator• [R.3.0.4.a, 4.2.1.f, 4.3.1.c). Think about ox**2c. d)
Yes. e) DQE (!:~! !!1~. in,t) ~~~2!~ = createc.

8.4 No, ora ndomo

152 An ALGOL 68 Com~anion

possesses a routine which has no •parameters•. c) •83•. d) Yes.
e) No, c+c is not an cactual-parameterc.

8.5 a) One. b) 16 times a sufficient number [R.10.b Step 3,
10.2.3.i,j, 10.2.4.i,j, 10.2.5.a,b, 10.2.6.b,
10.2.7.j,k,p,q,r,s, 10.2.10.j,k,:i]. c) 30, [R.10.5.2.2.b,
10.5.3.2.f, 10.2.0]. d) There is none since this is a •monadic­
operator•. e) No, it is a •co?formity-relator• [R.8.3.2.1.b].

8.6 a) Yes, but it cannot be contained in a proper program.
b) Yes, because the second occurrence of cabsc is that of a
•monadic-indication•. and does not identify the first. c) In
order to reinstate the •dyadic-indications• and •operators• of
the •standard-prelude•. They may have been re-declared. d) Yes
(R.6 • . 1.2.a, 6.0.2.d Step 1). e) Yes [R.6.1.2.a, 6.0.2.d Step 2).

8.7 a) R.10.2.5.a. b) R.11.11.k. c) R.11.11.i d)
R.10.2.8.d. e) R.10.2.10.i.

a) c(£~~! a= sk!£
a> O)c.

QQQ! : a> O)c. b) c(£~~! a= x

8.9 a) •-1•. b) No, it is an •identity-relation•. c) No, a
•cast• is not an •operand•. d) Yes. e) •false•.

8.10 a) No. b) No. c) Yes, try coercing from cinto or from
OEfOC !n!c. d) Yes. e) No, there is a multiple-definition of
c-c.

8.11 a) It draws a straight line of length cdc in the
directions. b) Try, on, s, e, we. c)

8.12 a) Remove 2, remove 1. b) Remove 1, remove 3, replace
1, remove 2, remove 1. c) The •formula• requires that oao should
be a •variable•. d) Remove 2, remove 1, remove 4, replace 1,
replace 2, remove 1, remove 3, replace 1, remove 2, remove 1. e)
Try ceE~.£ upc and ceE~f downc.

9.1 a) No. b) Yes. c) No [R.8.3.4.1.a]. d) No. e) Yes
(R.5.1.0.1.bJ.

9.2 a) Infinitely many. b) Six. c) Two. d) Two. e)
•virtual, actual• and •formal•.

9.3 a) No [R.3.0.2.b]. b) Three. c) No, it is a metarule.
d) Yes. e) No.

9.4
say. d)
• real•.

a) No [R.1.2.1.m). b) No. c) Yes,
•real-field-letter-r-letter-e-and•

•row-of-character•,
[R.8.5.2.1.a]. e)

9.5 a) · (I) L: X; y z. (II) N:; Np. (i) s: Nx, yNy,
NNz. (ii) NpL : N L, L. b) (I) L : X i y ; z. (II) N : p ; N p.
(i) s: Nx, Ny, Nz. (ii) NpL: NL, L. (iii) pL:. c) (I) L: x
; y ; z. (II) N : ; pN. (i) s : letter x symbol N, letter y
symbol N, letter z symbol N. (ii) letter L symbol pH : letter L

symbol, letter L s

9.6 a) No. b)
only •procedure-!! t
• row-of •• ·

9.7 a) •void-1
b) •virtual NONSTOI
FOR!'!• d) •strongly
ly united to !DID

10.1 a) No,
1.1.5.bl. b) No ·, o;
No, []real .· is · n1
alrea:ly -specifies ;
(R.9.2.b). .

10.2
Df!=!f ~ VD or Df~f !
!!D · contains cg_o wl
rR.7.1.2.c). c) D!!!
g~!!> a. d) ostruc
g!!!!> left operand~ ·
!fi.E!~. E!'!! g!!!!l
title, £g! QQQ~ neJ

10.3 a) The fil
indica tion• and 1
•virtual-declarer• .
two are •qlobal-<
next of a := link :
ni!c.-e) No [a:6:2 .

10. 4 a) No. b)

10. 5 a) If oa c
• formula• and ~b
indication•, then-i
rower•.

1 0 • 6 a) Yes. b)
e) Yes.

10.7 a) Yes. b)
"jim", n2~! := ln!J

10.8 a) cleft
ni!) c. b) BOB. c) •

10.9 a) In linE
become of! ; b := f

10.11 a) DEfQ~
ni! I p1 (left of ro
: print(")"))~:b)
I: left Qf root .-

•· d) Yes.

.bstep3,
10. 2. 6 . b,

J.5 . 2.2.b,
•monadic-

2.1.b).

r program.
that of a

t. c) In
raters• of

d) Yes
d Step 2).

1.11.i d)

! a = x

• c) No, a

or from
inition of

o in the

3, replace
oac should
eplace 1,
move 1. e)

No. e) Yes

T vo. e)

metarul e.

haracte r•,
.1 . a]. e)

Nx, yMy,
: p ; N P•

(I) L : X
1, let t er y

letter L

An ALGOL 68 Companion 153

symbol, letter L symbol N.

9.6 a) No. b) Yes. c) No. d) No. e) Yes, •NONPROC• excludes
only •procedure-~OID• or the same preceded by •reference-to• or
• row-of •• · ,,_

9.7 a) •void-cohesion• or •void-confrontation• [R.8.5.0.1).
b) •virtual NONSTDWED declarer•. c) •firmly dereferenced to MODE:
FOR!'!• d) •strongly rowed to REFETY row of MODE FORM•. e) •STIRM
ly united to !10ID FORM•.

10.1 a) No, crealc is not a •mode-indic:ttion• [R.4.2.1.b,
1.1.5.b]. b) No ·, ca~-is an •identifier•, not · an •indicant•. c)
No, [)!:_gal .· is · not an •actual-declarer•. d) Perhaps, if cbo
alreaily specifies a united modec [R.7:o1.1.cc~ 9.2.b]. e) Yes
[R.9.2.b].

10.2 a) c~.!:f!!~.!:(.E~! .!2 a, .H2£ .!2 d)c b) This is undefined. In
cref ~ vo or o_Eg.f f~f.!! v = !.2£ fg! _!!D, the •generator• D}Q£ fgf
~c - contains c~c which is virtual and is therefore not developed
r R ~ 7 • 1. 2 • C]. C) Dl!!!.!Q!! (!:.gf f2!!~.!:, !:_gf !~!:., . . _!gf · .!.!:i~}g, f~f
£~!!> c. d) c~!:f!!£.!: (!!!!.!2!! (£~! £2!!~.!, E.g! ·- y~f, !~! .!:EiE.!g, · fgf
£~!!>left operand, .!!!.!: operator, Y!!iQ!! (£gf £2!!~.!:. fgf !.i!f• f~!
!:fiE!~. rgf £~!1> right operand) c. e) D~.!:E!!£.!([1 :0 fle~] £Q~f
title, rgf .!2.22~ next)c.

10.3 a) The first is its defining occurrence as a •mode­
indication• and the second is an applied occurrence as a
•v irtual-declarer•. b) The first i s a •declarer• and the other
two are •global-generators•. c) Yes. d) c.J:i!!! a := (1, !!i.!l
next of a := link := (2, nil) ; next of next 2! a := .!i!!! .- (3,
!!Hc.-e) No [R:6:2.1.f]. --- --

10.4 a) No. b) Yes. c) No. d) Yes. e) Yes.

10.5 a) If c~c is a •dyadic-indication•, then it is a
•formula• and cb uc is a ocast•; if o~c is a •mode­
indication•, then-it is a •declaration• and cb :uo is a •row-of­
rower•.

10.6 a) Yes. b) No. c) D2!:f!!£.!.!! = <i!!!: u, !~f.!! v)c. d) No.
e) Yes.

10.7
11 jim",

a) Yes. b) D!!2Qg tree : = (n2Q~
!!2.1! := (!!!.!. "sam", nil>> o.

10.8 a) cleft 2! right
!!i!)c. b) BOB. c) efalse •• d)

2! tree
•true•. e)

10.9 a) In line 2, insert c~221 b :=
become ofi ; b := !~J:se ; done : be.

:= (!!!.!, "bob", nil> ,

: -= n.2.Q! : = <nil. "ron",
efalsea, •true ••

and 8

10.11 a) 0!?.£2£: p1 = (~!! !!.2£! root) (print("("); (root:#:
!!!1 1 p1 (left .2! root) ; print (val 2!. root) ; p1 (right of root))
; print(")"))c. b) D2~2f p2 = (!!f !!QQ! root) : (root -:1: !!.!1
1: left 2f root.-. C!:gf .!!2.1!: n.!.!> ~n.Q right 2! root:=: C.!:g!

154 An ALGOL 68 Companion

DQ~! : nil> I print(val Q! root)
; print{",") ; pt;int(val Qf root)
root) print(")''))o.

1 print("~) ; p2(left Qf root)
; print(",") ; ~(right Q!

~.2-
10.12 a) Remove oaction (p) o from line 12 and, insert it in
line 8.

11.2 a) No, 1,1prin to has only one parameter. b) No, onilo can
only be hipped, but since it must also be united,--it is
therefore · in a firm position [R.8.2.4.1.b]. ~ 1 [R.10.5.1.1.f,
10.5.0.2 Table 1]. d) +3. 140000E +0. e) +3.140000E +0.

11.3 a) Undefined, since the repetitive statement is void
and therefore cannot be coerced to D£f1B!1I2!D• b) No
[R.8.2.4.1.b]. c) les, dereference to O£!! !!~1o, unite to
oin!~E!D and then row it. d) Undefined, since oso cannot be
coerced to DQY!!lE!D· e) No, cfQf~~!o cannot be coerced to
c()f!~~!IE!O•

11.4 a) ? +5. b) ? ABC. c) Twice dereferenced and then
united to DEfi!!11:n~!o, ? +3.400000E +0. d) Four and 9 spaces
left over. e) Nine and 2 spaces left over. f) A B c.

This document m

The pr

Please sen
and bill me.

Name •

Addres:

left of root)
::§(right Q£
>.2.

insert it in

No, c.n.!1c can
.ited, it is
R. 1 0. 5 • 1. 1 • f I

+0.

ent is void
:I£~c. b) No
,c, unite to
csa cannot be

coerced to

:need and then
tnd 9 spaces

An ALGOL 68 Companion

An

ALGOL 68 CO~PANION

J. E .L. Peek

Revised Preliminary Edition

I'! arch 19 72

This document may be ordered from

The Bookstore,
University of British Columbia,
Vancouver 8, B.C.,
Canada.

The price is $2.00 plus handling charges •

155

.
Please send me •••••• copies of An ALGOL 68 CJMPANION,

and bill me.

Name

Address

