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Introduction 

This book is not intended as a complete description of the 
language ALGOL 68. That description already exists in the form 
of the "Report on the Algorithmic Langu~ge ALGOL 68", 
hereinafter referred to as the "Report" and referenced by [R] 
(see the references). The Report is, of course, a reference 
document and it must, of necessity, strive for the utmost 
precision in meaning. Certain sections, therefore, may yield 
their proper intent only after what the reader may think is an 
excessive amount of close scrutiny. But then, like any legal 
statute, the Report should be read carefully, for the authors 
were determined that, when the reader eventually gropes his way 
to -a meaning in a carefully worded passage, it should yield, 
beyond all possible doubt, the meaning which w~s intended, and 
not some other meaning ~hich the reader may have had in mind. A 
student of law does not learn the law by first studying the 
statutes. Likewise, the best approach to a , new programming 
language may not be through its defining document. The law 
student must be taught how to find his way among the statutes 
and the student of programming needs to be shown how to get the 
information he needs from the defining document of a programming 
language. 

Our intention is therefore to introduce the reader, in easy 
stages, to the ideas and the terminolcgy contained in the 
Report. Since it is assumed that the Report is always at hand 
(this book should not be read without it), we absolve ourselves 
of the necessity fpr describing every detail of the language. 
our purpose will have been fulfilled, if the reader can, after 
studying this book, put it aside, and from that point onward use 
the Report alone. 

This approach means that it will not be in the interests of 
the reader to try to explain ALGOL 68 in terms of the concepts 
used in, say ALGOL 60, or those used in any other programming 
language. ALGOL 68 has its own new terminology because many of 
the concepts are new, and though there are similarities with the 
concepts in other languages, usually the eiact counterpart is 
not available. we shall therefore try to be meticulous about 
using only the terminology which is employed in the Repcrt; in 
this way the transition from the Companion to the Report will be 
easier. 

We adopt the same typographical devices as in the Report, 
whereby examples of the ALGOL 68 representation language are 
given in italic, e. g., DQ~~l!!! print ("algol.!.68") ~n.Qo, and 
notions (i.e., metasyntactic variables, in the sense of ALGOL 
60, or nonterminals in the sense of formal grammars) are in a 
type font which is larger than normal, e.g., •serial-clause•, 
and usually hyphenated. Experience shows that this practice does 
not unduly disturb the eye on first reading. It has the 
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advantage that closer examination can reveal whether a word is 
used in the ordinary sense of the English language or whether it 
is used in a technical sense. For example, if the reader wishes 
to know the meaning of "formula", he will look it up in his 
favourite dictionary; however, to find out about "•formula•" he 
must look at the rule 8.4.1.a of the Report. This practice will 
enable us to use words with a precision which would otherwise be 
difficult to achieve. As with the Report, there are also other 
words, like "name" or "mode" which are not piirt of the syntax, 
but each is given a technical meaning. We shall use quotes, when 
introducing the reader to these words, to alert him to the f~=t 
that he is meeting a new word with a special meaning. 

At the end of each chapter is a set of review questions, 
the answers to which are provided in the final pages. Many of 
these questions test the material as presenten in this text, but 
others require a deeper study of some parts of the Report. We 
have tried to provide references to the Report wherever these 
may be needed. 

Some of the earlier chapters of this text were read ind 
corrected by Daniel Berry, Wendy Black, Hellmut Golde, Lamb e rt 
Meertens, Tad Pinkerton, Helge Scheidig, Aad van Wijngaarden ~nd 
many others who may forgive the lack of mention here. Their 
assistance is gratefully acknowledged. Naturally the author is 
responsible for any remaining imperfections in this preliminary 
edition. He hopes that readers will communicate with him, 
thereby helping to eliminate as many errors as possible from the 
final edition. 

This preliminary editicn is produced by a text formatting 
program written by W. Webt at the University of British Columbia 
for use with the TN print chain. This print chain introduces 
certain restrictions, so me of which are exasperating (e.g., 
there is no genuine multiplication sign). To simulate the effect 
of different type fonts, a bracketing scheme is used. ALGOL 68 
external objects (program £ragmen ts) are represented thus 

CQ~9l~ fg2± X ; X := 3. 1~ g~QC 
ALGOL 68 internal objects (values) are represented thus 

.true. 
and paranotions and modes ~yntactic parts) are represented thus 

•strong-unitary-real-clause• 
This means that, e.g., a collection of three •identifiers• used 
for illustration, should be written 

cxo, oa1b2c3c, can identifiero 
but it will be easier on the eye if we assume that 

o, c 
may be replaced by 

so we shall generally use the more pleasing and less cluttered 
form 

ox, a1b2c3, an identifiero, 
unless the context calls for greater clarity. 

This edition is 
correction of some err 
planned for the end of 
The author is grate 
preliminary edition an 
errors and suggestion~ 
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This edition is a reprint of the preliminary edition after 
correction of some errors and misprints. Another edition is 
planned for the end of 1972 and may contain additional chapters. 
The author is grateful to those who sent corrections to the 
preliminary edition and would appreciate further correction of 
errors and suggestions for improvement. 
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1 Denotations 

1.1 Language levels 

~ur purpose is to learn how to read ~nd write ALGOL 68 
• programs•. one might suppose that 

DQ~9l!! £~~1 X; X := ). n ~QD 
is an ALGOL 68 •program•, because it is a valid ALGOL 60 
• program• and, in a sense, this is the case. However, the 
similarities between ALGOL 60 and ALGOL 68 begin and end just 
about here, since 
omypragram: (print { {{real lengths > 1 1 "multiple" "single" ) , 

" 1 precision~environment11 )))o 
is also, in the same sense, an ALGOL 68 •program•. ALGOL 68 is 
not an extension of ALGOL 60, though the lessons learned in the 
design and use of ALGOL 60 have contributed to the final sh1pe 
of the new language. It has, in relation to its contemporariP-s, 
a powerful synt~ctic structure, which enables the defining 
document of the language to be kept to a minimum. This Companion 
is an introduction to the language, which should be read only 
with the defining document, the Report [R ], re~dily at hand. For 
example, the re~der should now turn to the Introduction in the 
Report [R.O], to get some flavour of the new language. 

In ALGOL 68 we may speak of •programs• in the "strict 
language" and in the "extended language" [R.1.1.1.a]. The strict 
language is that which agrees with the synt~x of the defining 
document. In a natural language, like English, certain 
abbreviations, su=h as "e.g.", are commonly accepted. We usually 
write "e.g." rather than the longer words "for example", t:ut the 
meaning is the same. The abbreviations of ALGOL 68, are known as 
"extensions" (R.9]. The application of these extensions to the 
strict language yields the extended language. This means that, 
though •programs• may be written in the extended language, their 
meaning will be explained in terms of the strict language. 

Related to both of these is the "representation language". 
The first example given above, is a representation [R.3. 1.1] of 
a •particular-program• [R.2. 1.d] of ALGOL 68. We say that it i~ 
a representation because o~~g!!!o is a representation of the 
•begin-symbol•, Df~~±o is a representation of the •real-symbol• 
and even the point within o3. 14o is a representation of the 
• pain t-symbol•. Thus, the example 

DQ~9.!!! £~~± X ; X := ). 14 ~!!~D 
{which happens to be written in the extended language), is a 
representation of the following sequence of symbols 

•begin-symbol, real-symbol, letter-x-symbol, go-on-symbol, 
letter-x-symbol, becomes-symbol, digit-three-symbol, point­
symbol, digit-one-symbol, digit-four-symbol, end-symbol•. 

We se~ at once, that it would be too tenious to write •programs• 
or parts of •programs• without using the representations. 
Nevertheless, the presence of the strict language, in which ~11 
the terminals end in the word •symbol•, will make it easier for 
us to formulate syntactic rules and to describe and to use the 
syntax:. 

1. 2 Objects 

ALGOL 68 is desc 
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1.2 Objects 

ALGOL 68 is described in terms of an hypothetical computer 
which deals with two kinds of "objects"[R.2.2.1]. These are 
"internal" objects and "external" objects. Roughly speaking, an 
external object is the sequence of symbols represented by the 
marks which the programmer makes on his paper when . creating a 
•proqram•[R.2. 1] and an internal object is an arrangement of 
bits within the computer. For example, when the programmer 
writes c3. 14c, he makes, from four symbols, an external· cbjecti 
which is a •denotation•(R.S]. Within the computer this may be 
reflected in a certain arrangement of bits, known as a real 
value, the particular arrangement chosen depending on the kind 
of computer and the implementer's whim. Thus, c3.14c, which is a 
sequence of symbols[R.3.1], is an external object and the 
arrangements of bits is the internal object. 

There is an important relationship between external objects 
and internal objects. One says that an external object may 
"possess" [R.2.2.2.d] an internal object. Thus, the external 
object, the •denotation• n3.14c, possesses an internal object 
which is a collection of bits within the computer. We shall 
speak of the internal object as a "real value" [R.2.2.3.aJ. The 
form which the internal object takes is of no particular concern 
to the programmer. It is decided for him by the manufacturer of 
the computer and by the implementer of the language, i.e., by 
the compiler writer. In this text we shall represent this by 
means of a diagram as in figure 1.2, where the internal object 

c3.14c 

: (2) 

r--i---, 
I I ( 1 ) 
L-----J 

Fig. 1.2 

is suggested by a rectangle as at 1 and the relationship of 
possession by the dotted line at 2. 

The reader should note that we have introduced, by means of 
quotes, some standard terminology from the Report( R). Wherever 
possible, references to the Report will be given and every 
effort will be made, in what follows, to remain as close to the 
Report as possible in the use of this terminology. In this 
manner the reader may be encouraged to obtain more information 
about the language by reading the Report itself. 

The use of a different type font, such as in •denotation•, : 
indicates that we are talking about an object in ALGOL 68 which 
is described by the syntax of the language (see paranotions 
fR.1.1.6.c]). If the same word occurs in normal type font, then 
an English dictionary should be consulted for its meaning. ~ 
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1. 3 Names 

Computers have a storage structure in which the memory is 
regarded as consisting of small pieces, each usually called a 
word or byte, with each piece being given a unigue address, 
i,e., a means by which the computer can locate that word or 
byte. In our hypothetical computer, this situation is modelled 
by sayinq that the computer has "names" [R.2.2.3.5], each 
n&meCl> referring to some value. When we say that a name 
~~efers" [R.2.2.2.1) to a real value, we are modelling the 
~ituation where the real value is an arrangement of bits which 

_ : ts stored at a certain storage place or addres:. The name is 
~ •thus the address of the place where the value 1s stored and the 

value is the content of that storage place. We have now isolated 
,:_ another kind of internal object, i.e., a "name", and wE note 

·ttrat there is a relationship between two internal objects, viz., 
a name may "refer" to a value. In the diagrams a name will be 

. ,' repre!sented as in figure 1.3 at 1 and the relationship of 
). ·. '. 

( 1) 0 ,.-----, 
l ; - ~ · o o------>-------~ 

0 ( 2) L _____ J 

Fiq.1.3 

_referring by a directed line as at 2. In p:tssing, we mention 
that a name is also a value [ R.2.2.3] and another name may refer 
to it, but we shall return to this point later. 

-· ··, T 4 Variables 

Most programmers do not wish to work only with 
•denotations• such as o3.14o, but also with •variabl e s• 
[R.6.0.1.e] such as axe. In ALGOL 68, as in many other 
lan guages, if a programmer wishes to consider oxn as a variable, 
he writes a •declaration• [R.7.4.1), e.g., ofg!!l: xo. The effe ct 
of this •declaration• is to allocate a storage place, i.E., to 
create a name which may refer to a real value, this name being 
possessed by cxo. In figure 1.4 the relationship of possession 

DXD 

: ( 1 ) 

0 ,------, 

o o---->-----1 
0 

l _____ J 

Fig.1.4 

is indicated by the dotted line at 1. It is important that this 
n~me may not refer to a value of another mode (i.e., to a member 
of another class of values), such as •boolean• or •character•, 
for reasons of security in the elaboration (R. 1. 1.6) of 
-~---

'J> except for .nil• ( R.2.2.2.l) 

•programs•. In this 
so we leave the sub 
the next chapter. 

1. 5 Denotations 
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•programs•. In this chapter we are concerned with •denotations•, 
so we leave the subject of •declarations• and •variables• for 
the next chapter. 

1.5 Denotations 

There are four mutually exclusive classes of "plain" values 
[ R.2.2.3.1 ]. These are, "boolean", "integral", "real" and 
"character" values. The property of belonging to one of these 
classes is known as the "mode" [ R.2.2.4. 1) of the value. A real 
value is thus said to be of mode •real•. For each of these four 
classes, i.e., for each of the modes •boolean, integral, real• 
and •character• we have •denotations•, which are certain 
sequences of symbols possessing values of that mode. Examples 
are, atr.!!g, 12, 5.67c and o"w"o. We consider each of these 
•denotations• in turn. 

1.6 Boolean denotations 

This is the simplest of the •plain-denotations•. There are 
two values (internal objects) of mode •boolean•, viz., •true. 
and •false.. consequently we need two external objects to 
possess them. These are the •true-symbol•, c!I~ga and the 
•false-symbol•, o!~!~gc. At the risk of tedious repetition, but 
for further emphasis, we observe that the external object cii~~c 
possesses an internal object, which is the boolean value .true•, 

r--~--, 
l•true•l 
L-----J 

Fig.1.6 

(external) 

(internal) 

a value of mode •boolean• (see figure 1.6). Of course, a similar 
statement applies to c!~12~c • 

The syntax of •boolean-denotations• is very simple, and 
supplies a starting point for a study of the syntacti= 
description of the languag e. This is embodied in the rule 
rR.5.1.3.1.a] 

•boolean denotation :true symbol ; false symbol.• , 
which may be read as "a •boolean-denotation• may be a •true­
symbol• or a •false-symbol•"· 

1. 7 Integral denotations 

An •integral-denotation•, for example, o34o or cOo or 
c000123c, is a sequence of •digit-tokens•. This means that an 
•integral-denotation• is easy to recognise and to describe. Its 
syntax rule (R.5.1.1.1.a] is 

•integral denotation : digit token sequence.• 
which means the same as the rule 
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integral denotation : digit token ; 
integral denotation, digit token. 

The full explanation of how to use this syntactic method of 
description will be found in Chapter 1 of the Report. It is 
important that the reader should, at some time, master this 
syntactic description method. For the moment we may be content 
to know that this rule describes an •integral-denotation• as a 
sequence of •digit-tokens•, a •digit-token• being represented by 
oO, 1, 2, 3, 4, 5, 6, 7, 8o or o9c. rhe h.nguage makes no 
restriction on the length of the sequence of •digit-tokens•, 
although, in a particular implementation, such a restriction may 
well exist. 

An •integral-denotation•, of course, possesses an integral 
value, as one might expect. Not surprisingly, the value 
possessed by o000121c is •123•, which is equal to that possessej 
by n123o. 

1.8 Real denotations 

There are two kinds of •real-denotation• [R.5.1.2 ]. Some 
examples are: n3.14, .000123, 123.45e6, Se-16, 4.7591D12c(l>. We 
classify the first two as •varia ble-point-numerals• and the 
r emaining three as •floating-point-numerals•, the latter being 
the kind of •real-denotation• likely to be used by the physicist 
or engineer. This classification is stated [R.5.1.2.1.a] in the 
rule 

•real denotation : variable point numeral ; 
floating point numeral.• 

•Variable-point-numerals• have an optional •integral-part•, like 
o121o, followed by a mandatory •fractional-ptrt• like c.14o or 
o.000123o. This is expressed [ R.5.1.2.1.b] in the rule 

•variable point numeral : 
integral part option, fractional part.• 

Examples of •variable-point-numerals• are therefore o123.0, 
3.456, • 12335o and o.00023o but not n1.o. The •integral-part­
option• means that the •integral-part• may be present or absent. 
An explanation of the syntactic device involving the word 
•option• is to be found in the rule [R.3.0.1.b] 

•NOTION option : NOTION ; EMPTY.• 
and the fact that any notion may repl~ce the rnetanotion 
•NOTI3N•, but the casual reader need not concern himself yet 
with these mysteries. 

We complete the description of •variable-point-numerals• by 
the two r u 1 es [ R. 5. 1 • 2. 1 • c, d ] 

•integral part: integral denotation. 
fractional part : point symbol, integral denotation. • 

Because we have already seen the rule for •integral-denotation• 
and can guess that the representation of the •roint-symbol• is 
o.o, this syntax should now be clear. 

< 1 > A superscript 1o is used here in place of a subscript 10 
which is not available on the TN printer chain. 

A •floating-po 
like c123c or o123.4 
ce+23, e2, e-16o or 

•floating-point-nu 
Examples of •floa 
2.3e-4o and o.3e26c 
for example, possess 
number written in p 
~o written for compu 
1nput hardware to 
part• [R.5.1.2.1.f] 

•stagnant part : i 
variable point n 

Thus both o123o and 
The •exponent-pa 
[ R. 5.1.2.1.g,h,i,3.0 

•exponent part : t 
times ten to the p 

times ten to the 
power of ten : plu 
plusminus : plus s 
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that the •plusminu 
parts• are ce-5, e4, 

To review the a 
denotations•: c123. 
that o123.o is not a 
that it should no 
representation of th 
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permitted, ambiguiti 
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•iden tifier•. 
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Some •characte 
"+ 11
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understand, accordin 

•character denotat 
quote symbol, st 

provided one can 
[R.5.1.4.1.b]. Bowev 
value which is posse 
character •"•. [ 
denotations•, in sec 
whereby the •quote 
doubled is a convenj 
available character 
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A •floating-point-numeral• consists of ~ •stagnant-part•, 
like o123o or c123.45c, followed by an •exponent-part•, like 
ce+23, e2, e-16c or atosc. Its syntax is in the rule 

•floating-point-numeral : stagnant part, exponent part.• 
Examples of •floating-point-numerals• are therefore, c1e1, 
2.3e-4o and c.3e26c but not c3.e14c. The •denotation• c.3e26c, 
for example, possesses a real value, usually associated with the 
number written in physics textbooks as .3*1026. It could not be 
so written for computer input because of the inability of most 
input hardware to accept superscripts. The rule for •stagnant­
part• [R.5.1.2.1.f] is 

•stagnant part : integral denotation ; 
variable point numeral.• ~ 

Thus both o123c and c123.45c are acceptable •stagnant-parts•. 
The •exponent-part• is described in the rules 
[R.5.1.2.1.g,h,i,3.0.4.c] 

•exponent part : times ten to the power choice, power of ten. 
times ten to the power choice 

times ten to the power symbol ; letter e. 
power of ten : plusminus option, integral denotation. 
plusminus : plus symbol ; minus symbol.• 

The •times-ten-to-the-power-symbol• is represented by the 
subscripted ten atoa, but since this is not commonly available, 
the •letter-e• is also permitted. The •plusminus-option• means 
that the •plusminus• may be omitted. Examples of •exponent­
parts• are ce-5, e4, e+56c and ct02c. 

To review the above, we give some more examples of •real­
denotations•: c123. 4, • 56789, 464. 64e-53c and c9871021o. Note 
that c123.o is not a •real-denotation• and there is good reason 
that it should not be. rhe explanation is to be found in the 
representation of the •completion-symbol• [R.3.1.1.f], which is 
the same as that of the •point-symbol•, so that, were c123.c 
permitted, ambiguities would arise. Also, oe15c, for example, is 
not a •real-denotation• because it might be confused with an 
•identifier•. 

1.9 Character denotations 

Some •character-denotations• are [R.S. 1.4] c"a", "c", "$", 
"+", ")"o and c""""o. All except the last appear easy enough to 
understand, according to the rule [R.5.1.4.1.a] 

•character denotation : 
quote symbol, string item, quote symbol.• , 

provided one can guess the meaning of •string-item• 
[R.5.1.4.1.b]. However, the •denotation• o""""o possesses the 
value which is possessed by the •quote-image•. This value is the 
character •"•· [R.5.1.4.2.a]. When we come to •string­
denotations•, in section 1. 11, we shall see that the device 
whereby the •quote-symbol• within a •character-denotation• is 
doubled is a convenience which enables every member of the 
available character set to be in a string. 
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1. 10 Modes 

Values within the computer, considered up to now, have been 
of four kinds, viz., truth values, integers, real numbers ~nd 
characters. Each member of one of these classes is of the same 
"mode" [R.2.2.4.1] as any other member of the same class. These 
modes are •boolean, integral, real• and •character•, 
respectively. If computing were restricted to these four modes, 
it would te dull indeed. A useful computer lanyuaye needs to 
consider values of other modes. For exam~le, the symbol 
manipulator often considers values of mode •row of character•, 
which he thinks of as character strings, and the numeri~al 
analyst considers values of mode •row of row of real•, which he 
thinks of as matrices of real values. 

In ALGOL 68, a row of values of one same mode, known as a 
multiple value [R.2.2.3.3], is also a value of an acceptable 
mode. Thus, we may have values which are of the mode •row of 
boolean, row of integral, row of real• or •row of =haracter•. In 
the diagrams such a multiple value will be represented as in 

r------~-----T------r------T------r------~-----, 

I I I I I I I I 
L------~-----~------i-----~------L------~-----~ 

Fig.1.10 

figure 1.10. Many more modes may be considered; in fact, the 
number of different modes is infinite. we shall not concern 
ourselves here with this interesting point, nor shall we discuss 
some of the other modes. our purpose is to roint out that •row 
of character• is a mode. There are •denotations• for values of 
this mode and we shall now consider them. 

1.11 String denotations 

The syntactic rule for •string-denotation• [R.5.3. 1.b) is 
•row of character denotation : quote symbol, 

string item sequence proper option, quote symbol. • 
From what has gone before, the reader will surmise that the 
following are examples of •string-denotations•: o"abc", "a+b", 
"t his!..is!..a!..quot e~symbo 1!..'"' !.." o. Observe that in the strict 
language, the representation of the •space-symbol• is o~o 
fR.1.1.1.b]. The only feature in the above syntax, which we have 

o" a be" c 

~-----r-----T-----1 
I •a• I •b• I •C• I 
L---~-----~-----J 

Fig. 1. 11 
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c.Q~gj,g real s : = 0 
ss :: 0 ¢for t 
x tthe current 
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~ni!~ ~ logical fil 

( get (standin, 
S +:= X ; SS 
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not yet encountered, is the use of the word •proper•. The ex~ct 
explanation is to be found in the rule 

•NOTION LIST proper : NOTION, LIST separator, NOTION LIST.• 
[R.3.0.1.g). It means that the sequence must contain at least 
two members. The use of the combination •proper option•, rnea~s 
then, that the sequence may contain either zero or two or more 
members. This implies that c"a"c is not a •string-denotation•, 
but that c""c is. Since we have already seen that c"a"c is a 
•character-denotation•, we can understand the reason for such an 
unusual choice of syntax. A •string-denotation• possesses a 
value which is of mode •row of character•. 3ur diagrams may 
represent it as in figure 1.11. The value possessed by c""c is a 
row of characters with no elements. 

1.12 Other denotations 

This discussion does not exhaust the •denotations• of ALGOL 
68, but it is sufficient for us to go on to other elementary 
parts of the languaqe. We shall return later to •long-integral­
denotations• like o1g~g Oc [R.5. 1.0.1.b], •long-real­
denotations• like o1Q~g • 1c, •bits-denotations• like cjQjc 
[ R.5.2.1 ], •routine-denotations• like o ( (~~~1 ~,b) !~~1 : (a > b 
1 a 1 b ))c [R.5.4] and •format-denotations• like c$16x37d$c 
[R.5.5]. 

1.13 Program example 

Though we are not yet ready to write •programs•, it is 
helpful to inspect one and perhaps therefrom to glean some 
ideas. The following will read some number of values from the 
standard input file and then print a count of the number, the 
arithmetic mean of the values and their standard deviation. 
Comments are enclosed by the symbol t or the symbol #. 

c.Q~g.!!! !:~~1 s := 0 tfor the sum of the valuest, 
ss := 0 tfor the sum of squarest, 
x tthe current value¢; 

!n! n := 0 ¢for a count of the number of values¢; 
~n.!1~ ~logical file ended(standin) gQ 

( get(standin, x) ¢R.10.5.2.2.bt; 
S +:=X ; SS +:= X** 2 ; n +:= 1 ¢R.10.2.11.d,e¢); 

put(standout, tR.10.5.2.1.bt ("count.!.=!..",n, 
11 •• mea n • = • ", s I n , 
~~~~stan~aid.!.deviation£=.!."• 

sqrt((ss- s ** 21 n) 1 n) ¢R.10.3.bt)) 

Points of relevance to this chapter are that there are four 
•variables• cs, ss, xc and one, some of which are initialized 
with the value zero. Also, the •integral-denotation• cOo occurs 
three times and the •integral-denotation• clo, once. There are 
three •row-of-character- denotations•. References to the Report 
are provided as explanation of other points to be covered in 
later chapters. 
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Review 1Juestions 

1.1 Language levels 

a) How does one recognize a terminal (R.1.1.2. ] in the syntax 
of ALGOL 68? 

b) Ar2 there two or three symbols of which the colon, c: c, is :1 

representation[ R.3.1.1 ]? 
c) Ar2 there any other representations which represent more than 

one •symbol• : R. 3.1. 1]? 
d) Is the mark"(" a representation of a •sub-symbol• or of an 

•open-symbol• or of both [R.3.1.1, 9.2.g]? 

1. 2 0 bj ects 

a) What kind of object i s possessed by the •denotation• c3.14c 
(R.2.2.2.d]? 

b) What object may possess a real value? 
c) Is c3.14c an internal object or an external object? 
d) Does c!r~~c possess atrue. or does •true. possess ci£~§c? 

1. 3 Names 

a) Can a real value refer to a name (R.2.2.3.5]? 
b) 
c) 
d) 
e) 

Can a name refer to a name? 
Is a name an external object? 
Can an external object possess 
Does an external object always 

1.4 Variables 

more than one name? 
possess a name? 

a) In the reach [ R.4.4.2.a] of D!~!!.! xo, can the name possessed 
by axe refer to an integral value? 

b) May c£g!!.! X, y, ZD be a •declaration• (R.9.2.c)? 

1.5 Denotations 

a) How many classes of plain values are there [ R.2.2.3.1 ]? 
b) Is there a class of plain values with finitely many members? 
c) What distinguishes classes of values [R.2.2.4.1.a]? 

a) 

b) 

1.6 Boolean denotations 

In the syntax, how should the syntactic marks 
"," be interpreted [R. 1.1.4]? 

Is •true. an internal object? 

1.7 Inteqral denotations 

..... . , 

a) Can two •integral-denotations• possess equal values? 
b) Is c-123D an •integral-denotation• [R.5.1.1.1]? 

..... . and 

c) Can a sequence of one thousand digits be an •integral­
denotation•? 

d) Does every •integral-denotation• possess a value 
r R. 5. 1. o. 2.bJ? 

1.8 Real denota 

a) Can two differen 
b) Is c1.o a •real-
c) Is o12o a •real-
d) Is o12e-4c a •re 
e) Is o-12e4c a •re, 

1. 9 Character d• 

a) Is o"""o a •char 
b) Does every •stri1 

1.10 ~odes 

a) How many differe1 
b) How many differe1 

1. 11 String den• 

a) Is c""""o a •str 
b) Is o 1111 o a •strin • 
C) what is the mode 

denotation•? 

1. 12 Other dena · 

a) Are the values 
same? 

b) What is the mode 
c) What is the mode 

1. 13 Program ex ; 

a) What is the mode 
b) What are the mode 
c) Does the example 
d) How many •integri 
e) Does the example 
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1.8 Real denotations 

a) Can tvo different •real-denotations• possess equal values? 
b) Is o1.o a •real-denotation•? 
c) Is n12o a •real-denotation•? 
d) Is a12e-4o a •real-denotation•? 
e) Is n-12e4o a •real-denotation•? 

1.9 Character denotations 

a) Is o"""a a •character-denotation•? 
b) Does every •string-item• possess a character (R.5.1.4.2)? 

1.10 Modes 

a) Hov many different modes are there? 
b) Hov many different modes can a programmer specify? 

1.11 String denotations 

a) Is a""""o a •string-denotation•? 
b) Is n""o a •string-denotation•? 
c) What is the mode of the value possessed by a •string­

denotation•? 

1.12 Other denotations 

a) Are the values possessed by a!Qll~ Oo and c!Qgg 1Qgg Oa the 
same? 

b) What is the mode of the value possessed by cjQjo (R.5.2]? 
c) What is the mode of the value possessed by o$16x3zd$o? 

1.13 Program example 

a) What is the mode of the value possessed by "count~=~"? 
b) What are the modes of osn and cnn? 
c) Does the example in 1.13 contain a •real-denotation•? 
d) Hov many •integral-denotations• are there in the example? 
e) Does the example contain a •character-denotation•? 
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2 Som e fundamental concepts 

2.1 Declarers 

In chapter 1 we found that each value within the computer 
is of a certain mode. (There is an exception, viz., the value 
•nil• fR.2.2.3.5.a), but we shall discuss this exception later.) 
Thus, there are values of •integral• mode, •real• mo1le, 
•character• mode, •row-of-character• mode, and so on. The 
pro g rammer needs to have some way of specifying modes, tecause 
when creating •variables• (R.6.0.1.e) he must help the computer 
to decide how much storage to allocate. The programmer specifies 
the modes by using •declarers• [R.7. 1 ]. 

There are five primitive [R.1.2.2.a) •declarers•. These a re 
cig.!c, which specifies the mode •integral•; crealo, which 
specifies the mode •real•; oboolo, which specifies the mode 
•boolean•; o~~~fc, which specifies- the mode •character• dod 
o.£~.I!!!~.!o, which specifies the mode •format• (of which we sh .1ll 
he ar mor e later). The mode of a •real- variable•, howeve:r, is 
•reference to real• a nd not •real•. This mode is specified by 
the • declarer• o_r~! f~~Jo. A •declarer• specifying the mode 
•row-of-real• is o[ )I~~Jo, or if actual bounds are required, 
then s ay, of 1: 10 ]E~~J:o. Th e mode of a real vector variatle is 
•re ference to row of real• and this mode is specified by a 
d eclarer like Df~! [ ]I~~lo or Df~f[ 1 :n ]I~~J:o. We see, therefor e , 
that other •declarers• may be built from the primitives by using 
the s ym bols Df~fo for •reference-to• and c( ]c for •row-ot•. 
Other possible prefixes are DffQg, ~.!I~~to and oyg!~go but th 2 se 
may also involve the use of the symbols o(o and o) o. 

This is not a full description of •declarers•, but enough 
for o ur present purpose. As a taste of what other •declarers• 
are poss ible, we list a few examples: 

ofgf £~! £~~1. [ 1:0 .£1g~J~h£f, E.I2£(fg~1)£~~1. [ 1:n)f2£~~t. 
E!Q£, ~.!fY~t(I~~! re, im), YDl2!!(.I~~J:, igt, QQQ!) o. 

2.2 Generators 

At the heart of ALGOL 6B is the notion •generator• 
fR.8.5.1]. There are two kinds of •generators•, •loc1.1-
gene rator• and •global-gene rator• [R.8.5.1.1.a]. Syntactically, 
a •local-generator• is a •local-symhol•, oJ,_2go, followed by a 
• declarer•, e.g., o12~ ig_!o. A •global-generator• is an optional 
•heap-symbol•, oh~!!QD, followed by a •declarer:•, e.g., o.h~i!E 
realo or crealo. The difference in semantics concerns the rnethoj 
~1-storage-iiiocation and particularly of storage retrieval. The 
inexperienced programmer is unlikely to make explicit use of 
•generators•, but •local-generators• appear implicitly in some 
frequ e ntly used •declarations•, so we shall introouce them now. 

2. 3 Local qenerators. 

The syntactic rule for •local-generator• might be written 
informally as: 

local generator : local symbol, actual declarer. 

but the strict syn 1 
other rules, coni 
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but the strict syntactic rule fR.8.5.1.1.b], in common with many 
other rules, contains a feature which the reader should now 
observe. The rule is 

•reference to MJDE local generator 
local symbol, actual MODE declarer. • 

The feature to be noticed is the occurrence of the "metanotion" 
•tWDE•, both to the left and to the right of the colon in the 
rule. A full description of this two-level syntax is contained 
in the Report ( R. 1. 1 ). For the moment we may be content with the 
explanation that the use of this metanotion is a device whereby 
several rules of the language may be combined into one. If we 
replace, consistently throughout the rule, the metanotion •MODE• 
by a m:>de (one of the terminal productions [R.1.1.J.f] of •MODE• 
like •integral• or •real•), then we obtain a rule of the strict 
language. For example, if we replace •MODE• by •real•, we obt~in 
the production rule 

•reference to real local generator 
local symbol, actual real declarer.• 

If we replace it by •boolean•, we obtain the rule 
•reference to boolean local generator : 

local symbol, actual toolean declarer.• 
This device, in this rule, enables the syntax to tell us 
something about the relationship between the mode of a 
•generator• and the mode of its •declarer•. Specifically, the 
mode of a •generator• is always •reference to• followed by the 
mode of its •declarer•. In the example of the •local-generator• 
c1Q£ I~~!c, its declarer, ctg~!c, specifies the mode •real•, but 
the generator, after its elaboration, possesses a value (a name) 
of mode •reference to real•; but this is the subject matter of 
the next section. 

2.4 The elaboration of a generator 

The "elaboration" of a •program• consists of a sequence of 
actions performed by the hypothetical computer. These actions 
are explained in the sections, headed Semantics, in the Report. 
We shall now examine the effect of the elaboration of a 
•generator• fR.8.5.1.21. A •generator• creates a name, i.e., it 
allocates computer storage. This name then refers to some value. 
This process is so fundamental to the understanding of the 

(external) c!Q£ I~~!c (5) 

(internal) 
(4) 
(possess) 

o ( 1) (3) r------, (2) 
0 0-------->----~ 

o (refer to) L------.J 

Fig. 2. 4. a 

language, that we will attempt to make it clear by means of a 
diagram. we may picture the elaboration of the •generator• c1Q~ 
I~~!c, as in figure 2.4.a. In this figure, the name is at 1, the 
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value to which it refers at 2, the relationship of reference at 
3, the relationship of possession at 4 and the external object 
at 5. The broken line then separates the external object from 
the two internal objects. The elaboration of the •local­
qenerator•, c!Qf ~~~!c, thus creates a name which refers to some 
real value. The external object, cloc realc, is then made to 
possess the name. This last action is-thus pictured at 4. The 
value referred to is some undefined real value. We shall see 
later that this value may be changed ("superseded" 
f R. 8. 3. 1. 2. a]) by ''assignment". 

2.5 Identity declarations 

•Generators• may occur in more than one context, but the 
most important context is the •identity-declaration• [R.7.4.1 ]. 
We give first an example of an easy •identity-declaration• 

7 containing no •generator•, ~· 
oint m = 4096c J . ' 

The effect of the elaboration of an •identity-declaration• i~c to 
make two different external objects possess the same a nteqljUD 
~ In the example at hand, we have an •integral-mode­
~ier•, orne, and an •integral-denotation•, c4096c. We have 
seen in chapter 1, that c4096c possesses an internal object, 
which is an integral value. This situation may be pictured, 

409 6c 

r-.l.---, 

1•4096•1 ,__ ____ __. 

Fiq.2.5.a 

c!Et. m = 4096c 

r------~ 
I •4 096 •I 
L--------1 

~--- ... 
1•4096•1 
l__ ___ _J 

Fig.2. 5. b 

before the elaboration of the •identity-declaration•, as in 
figur e 2.5.a. After the elaboration of the declaration, oint m = 
409 6c, the situation is as in figure 2.5.b, where ~m~ now 
possess es a new instance of the same integral value as that 
possessed by c4096c. It is important to note that cmc does not 
possess a name and, as a result, cmc may not appear as the 
•destination• of an •assignation•, as for example in om:= Oc. 
In fact, em := Oc would be just as improper as c4096 := Oo. The 
•identifier• erne is thus a •constant• [R.6.0.1.d]. 

Of greater interest is the declaration of a •variable•, of 
which 

cref real x = loc realc 
is an example. As we have--seen already--in 
programmer is permitted to write this in the 

creal xc 

r< 1-o't 
section ~· the 

extended form 

[R.9.2.a]. The first step in-the elaboration of this •identity­
declaration• is the elaboration of its •actual-rarameter•, which 
is c!Q£ £~~1c. we have seen, in 2.4, that this will make clo~ 
~~~!c possess a name which refers to some (undefined) real 
value. This stage is pictured in figure 2.5.c. After the 
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cloc realc. The re 
2~s:d.-Here, because 
the •destination• of 
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Fig.2.5. 
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elaboration of the •declaration•, the •reference-to-real­
identifier• oxo possesses the same value as that possessed by 
o!Q£ E~~lo. The result, in pictorial form, is shown in figure 
2.5.d. Here, because cxo now possesses a name, it may be used as 
the •destination• of an •assignation•, i.e., the value to which 
the name refers may be superseded [R.8.3.1.2.a] by another value 

0 0 

0 c 
0 

0 0 0 0 

o,.-----, 
L~ I 

o o,.-----, 
L-->---~! I 

L-----.J L------J 

Fig.2.5.c Fig.2.5.d 

(provided that it is of mode •real•). When examining diagrams, 
such as the one in figure 2.5.c and d, we should keep in mind 
the fact that the name possessed by an •identifier•, which is a 
•variable•, is unlikely to be a piece of storage set aside in 
the data area. It is rather the value to which this name refers 
which may be in the data area. The name itself is more likely to 
be part of a machine code instruction. Since programs are not 
usually permitted to alter their own coded instructions, it is 
essential that the relationship of possession should not be 
violated. Thus the name possessed is never changed. If we want 
to reach down to the data area, then we must make use of the 
name in order to find that part of the data area to which it 
refers and which can be changed (superseded). 

The possession of a name confers a special privilege. It is 
as though the name is the key to a storage cell without which it 
may not be unlocked. When it is unlocked, the content may be 
changed, but without this key, i.e., without the name, the 
content of that cell may not be changed, though it may be 
examined, as if through a window. 

To recapitulate then, the elaboration 
declaration• makes its •identifier• possess the 
that possessed by its •actual-parameter•. This 
in both of the examples o!Ei m = 4096c and D£~! 
!~~!o. 

2.6 The syntax of identity declarations 

of an •identity­
same value as 

is what occurred 
_!g_~! X = !Q~ 

we are perhaps getting a little ahead of ourselves, since 
we have not yet examined the syntax of •identity-declarations•. 
This might be described informally by 

identity declaration : 
formal parameter, equals symbol, actual parameter. 

but the rule in the Report [R.7.4.1.a] is 
•identity declaration : formal MODE parameter, 

equals symbol, actual MODE parameter.• 
We see here again the use of the metanotion •MODE•, which 
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enables one to condense many rules into one. The metanoticn must 
be replaced consistently ty one of its terminal productions 
fR.1.1.5.a], e.g., by •integral• or •reference to real•. Using 
the latter replacement, we obtain the production rule 
fR.1.1.2.c] 

•identity declaration formal reference to real parameter, 
eguals symbol, actual reference to real parameter.• 

'f WO of the notions in this rule envelop [R.1.1.6.j] the mode 
•reference to real•. In the •declaraticn• Of§f E~~1 x = !Q~ 
£ealo, the mode of the •gen e rator• oloc realo is •reference to 
real• and that of the •formal-parameter;-oref real XD is also 
• reference to real•. It follows from the -rule--on •form:il­
parameters• [R.5.ij.1.e], that oxo is then a •reference-to-real­
mode-identifier•. 

2.7 Formal parameters 

We must follow this a little further by examining the rule 
for •formal-parameters• [R.5.ij.1.e) which is 

•formal MODE parameter : 
formal MODE declarer, MODE mode identifier.• 

and in which the metanotion •MODE• appears three times. By 
substitution we obtain the rule applicable to the •formal­
pa rame ter • D£gf E§~~! XC, ViZ. 1 

•formal reference to real parameter : 
f~rmal reference to real declarer, 
reference to real mode identifier. • 

The •formal-reference-to-real-declarer• is aref realo and the 
•reference-to- real-mode-identifier• is oxn (R.ij~2~2]~--

2.8 An e xtension 

The object 
aref real x = lac realo 

is a r e presentation of-a ~declaration•-in-the strict langua ge. 
Although, as we have seen above, it enables one to explain the 
meanin y of the •identity-declaration• clearly, it is rather much 
t o write and would certainly not be popular with programmers. A 
simil a r situation exist s with the elisions of a natural 
lanqu a ge. It is well known that the sentence "Who's that?", 
stand s for the sentence "Who is that?", and that the former is 
used more often than the latter. Moreover, in explaining the 
meanin g of the first sentence, we always use the second, strict 
f o rm. S imilarly in AL GOL 68 we may write 

n£g~! xn 
to stand for 

o£~f £~~1 x = loc realo 
with the assurance that the meanin~-Is-~~e same [R.g.2.a ] . rhe 

,.----->------, 
( 1) I v 

D~~f £g~1 X = 1Qf £g~lo 
xxxxn xx xxxxx (2) 

Fig.2.8 

effect of this e 
temptation to call i 
parts which are unde 
the •identifier• i 
following symbol is 
that in the exten 
declarer• cref realo 
•actual-declarer:;--o 
remains. This is of 
multiple values. 

Another extens 
e.g., a£~~1 x, £g~! 

In the examples 
Y I .!!!! i 1 j 1 n I [ 1 : 1 
unless contradicted 
have the mode •refer 
•reference to integr 
row of real•. 

2.9 An assignation 

We have seen b 
which to unlock the 
when an assignment i 

(in the reach of 
•assignation• [ R.8 
assignment (R.8.3.1. 
is cxc, a •source 
•becomes-symbol•, c 
•destination• are 
"collaterally" ( R.6. 
obtain the values 

r-· 

I 
reference- to-re 

: ( 3) 

I 
ox 

: ( 
0 

: •••••••••••••• 0 0 · 

0 

•assignation• is the 
to the name possesse 
precisely, the name 
(new instance) of th 
An •assignation•, af 
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effect of this extension [R.1.1.7] (one must resist the 
temptation to call it a contraction) is that one may omit those 
parts which are underlined with x•s in figure 2.8. and then move 
the •identifier• in the manner indicated (provided that the 
following symbol is c,c, c;c or c:=c). It is important to note 
that in the extended •declaration• oreal xc, the •formal­
declarer• c£~! f~~!c (see figure 2.8 at 1)-Is omitted, but the 
•actual-declarer• cf~~1c (see figure at 2) from the •generator• 
remains. This is of significance when the •declarers• are for 
multiple values. 

Another extension, which we mention in passing, is that, 
e.g., c£~~1 x, f~~! yo may be written o£~~! x, yo [R.9.2.c]. 

In the examples which follow, the •declarations• of~~! x, 
y, .!n! i, j, n, ( 1 :10].£~.! x1, y1c will always be assumed. Thus, 
unl~ss contradicted by another •dec laration•, cxc and c yo will 
have the mode •reference to real•, ci, jo and cno th€ mode 
•reference to integral• a~d ox1o and cy1o the mode •reference to 
row of real•. 

2.9 An assignation 

We have seen before that a name is, as it were, a key with 
which to unlock the value to which it refers. This key is n€eded 
when an assignment is made. An external object of the form 

DX := 3.14o 
(in the reach of the •declaration• Df~~! xc), is an 
•assignation• [ R.8.3.1) and its elaboration involves an 
assignment [R.8.3.1.2.b]. It consists of a •destination•, which 
is axe, a •source•, which is c3.14o, and between the two a 
•becomes-symbol•, o:=c. First, both the •source• and the 
•destination• are elaborated in unspecified order, or 
"collaterally" [R.6.2.2.a] (see figure 2.9 at 1), i.€., we 
obtain the values possessed by them. The effect of the 

••••••••••••••••••••• reference-to-real-assignation 

r------------------L--r--------------, 
I I I 

reference-to-real-destination becomes-symbol real-source 
I I I 

ox := 3. 14c 
: (3) 

: ( 1) : ( 1 ) 
o r-----, r--__.J...--, 

: •••••••••••••• o a->-~ 1==========<=========1 I 
0 L------J (2) L------J 

Fig.2.9 

•assignation• is the assignment of the value possessed by c3.14o 
to the name possessed by cxc (see figure 2.9 at 2). ~ore 
precisely, the name possessed by axe is made to refer to a copy 
(new instance) of the value possessed by c3.14c [ R. 8. 3. 1. 2.c,d ]. 
An •assignation•, after ·its elaboration, possesses a value ana 
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the value possessed is that of its •destination•, which is a 
name (see figure at 3). 

2.10 The syntax of assiqnations 

We should now examine the syntax of •assignations•, in 
particular, the rule 

•reference to MODE assignation 
reference to MODE destination, becomes symbol, MODE source.• 

fR.H.3.1.1.a]. Remembering that the metanotion •MJDE• should be 
replaced consistently by some mode, we replace it by •real• and 
obtain the rule 

•reference to real assignation : 
reference to real destination, 

becomes symbol( real source.• 
The important point to notice about this rule, which is the rule 
governing the object ox := 3.14o, is ~he fact that the mode 
enveloped by the •destination• is •reference to rea1•, 11hile the 
mode enveloped by the •source• is •real•. We see therefore, the 
requirement that the •destination• must fOssess a name, while 
the •source• need not. Moreover the mode of the •destination• is 
always •reference-to• followed by the ~ode pf the •source•. 
Finally, we note that the mode of the •assignation• itself, i~ 
the same as that of the •destination•, as might be expected from 
the discussion in the last paragraph. 

We may now examine the construction 
oig! m = 4096 ; m := 4095o 

and decide that om := 4095o cannot be an •assignation•, tecause 
orne does not possess a name, i.e., its mode does not begin with 
•reference-to•. In fact, the mode of omo is •integral•. We :1re 
therefore justified in using the term •constant• [R.6.0. 1.d] for 
the •identifier• orne. 

2.11 References 

These subtle distinctions between •constants• dnd 
•variables•, the insistence on the difference in mode provided 
by •reference-to• and the distinction between those values which 
are names and those which are not, may s~em a high price to pay 
for the understanding of a programming language. Nevertheless, 
it is at the very heart of ALGOL 68 and should be understood 
well before proceeding further. Moreover, we shall find later 
that it pays a handsome dividend in chapter 5 when explaining 
the parameter mechanism in •calls• [R. 8.6.2.2] of routines. Some 
readers may be a little baffled and impatient for the reason 
that many well known programming languages<•> appear either not 
to make this distinction or to consider it of no importance. 
Even mathematicians (but perhaps not logici:tns) are guilty of 
slurring over the differences in meaning between o2.3 + 4.5o and 
ox + yo. Ingrained habits of thouqht are difficui-t to dislodge 
and it is not easy for us to suppress our ire while 
acknowledging that we have not properly understood something 

<t> Except for the languages LISP, SNOBOL and TRAC. 
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elementary. 
paragraph. 

We pursue this point a little fuEther in our next 

2.12 Dereferencing 

If ex:; 3.14c is an •assignation•, then surely ex .- yo 
(in the reach of the declaration ct~i!.! yo) must be also. 
However, the mode of exe and that of eye is •reference to real•, 
while an •assignation• requires that the mode of the 
•destination• should be •reference to• followed by the mode of 
the •source•. This means that the mode of eye should be •real•. 
It would seem then, that this object does not fit immediately 
into the syntax of •assignations•. However, it is an 
•assignation•. Diagrammatically, the situation is shown in 
figure 2.12. The first step is the elaboration of the •source• 
and the •destination• collaterally [R.6.2.2.a] (figure 2.12 at 
1,2,3 and 4). However, the •source•, in this object, reguires an 
extra step in its elaboration. Since eye pos£esses a n~me 
(figure 2.12 at 2) referring to a real value, this name is 

11 dereferenced" (figure 2.12 at 3), i.e., the value to which it 

••••••••••• reference-to-real-assignation 
I 

r---------~-~-----------------, 
I I I 

reference-to- becomes- real-source 
real-destination symbol 1 

I I I 
I 1 (4) ••••••••• real-base 
I I I {3) 

: (6) 1 1 reference-to-real-base 
I I I 

ex .- yo 
: ( 1) : (2) 
o r------, r------, o 

: •••••••••• o o->-1 1;;;(;;1 ~-<--o o 
0 L-------.J ( 5) L-------.J 0 

Pig. 2. 12 

refers is yielded (figure 2.12 at 4). The act of dereferencing 
is known as a "coercion", of which we shall hear much more later 
fR.8.2]. There is thus an intermediate step during which eye , 
as a •source•, possesses a real number. This moment is picturej 
in figure 2.12 at 4. From this intermediate situation we are now 
ready to make the assignment (figure 2.12 at 5). The value of 
the •assignation• is a name of mode •reference to real• (see the 
figure at 6). 

The syntactic analysis of the •assignation•, ex := yo, is 
not trivial and we are not ready to do it though we have 
sketched it roughly in figure 2.12. The main point is to 
determine how eye, which is of a priori mode •reference to 
real•, can be considered, a fOsteriori, of mode •real• (see the 
figure at 3). The crucial step is contained in the production 
rule 
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•strongly dereferenced to real base : reference to real base.• 
which is obtained from 8.2.1.1.a of the Report by suitable 
replacements of the metanotions. We do not intend to gc into 
further detail here, for coercion is the topic of chapter 6. our 
purpose is to affirm that ox := yo is indeed an •assignation• 
even though the a priori mode of oyo is not •real • . 

The reader may wish to persuade himself, from what 
before, that ox := y := 3. 14o is also an •assignation•, 
a different meaning from that of the, rather 
•dssignation• o(x := y) := 3.14o. 

2.11 Initialized declarations 

has gone 
and has 
foolish, 

The •actual-parameter• of an •identity-declaration• may 
also be an •assignation•. The pertinent rules are, in simplified 
form , 

actual parameter : unit ; 
unit : unitary clause • 
unitary clause : • • • ; confrontation 

R.7.4.1.b 
R.6.1.1.e 

R.8.1.1.a, 8.2.0.d 
confrontation: assignation /?\ .... R.B.J.0.1.a 

Since nl2~ £~'!! := 3.14o is a~ •assiqnation•, this means that 
oi~! £~~1: x = 1.2£ real := J. 14n is an •identity-declaration•. 
But we have seen th~t the object O!~f £~~! x = 12£ £~glo may be 
written of~i!l xo [R.9.2.a ]. This means that ofgi!! x := 3. 14o is 
also an •identity-declaration• with the same meaning as that of 
oref real x = loc real := 3 .14o. This meaning should now be 
evident--once -It -is-realized that the •assignation•, being the 
•actual-parameter•, is elaborated before the final step of the 
elaboration of the •identity-declaration•. ALGOL 68 may thus be 
considered as a language which contains initialized 
•declarations•, although the defining Report does not mention 
them. 

2.14 Program example 

The following •particular-program• corn~utes the components 
(principal and interest) of the man thly repayments of a loan. It 
first reads the principal, r:po, the interest rate per unit per 
year, oro, the number of times per year that the interest is 
converted, oto, the constant monthly payment, ompc and the 
number of years, oyo. It then prints an echo of the input, 
followed by a table of four columns consisting of the month 
number, the principal outstanding at the end of the month, the 
component of the monthly payment which is principal and that 
which is interest. A separate computation is made for the final 
monthly payment. Critical computations are made using values of 
mode •long-real•. 

o~~g.!~ 1:2.!!1 £~~1 p ¢the principal¢, 
r ¢the interest rate per unit per year¢, 
mp ¢the constant monthly payment¢, 

int t ¢the number of times per year that the interest is 
converted¢, y ¢the number of years¢ 

start here: read((p, r, t, mp, y)) 

outf(standout, 
$l"repayment.s 
l"interest. ra 
"·converted. 

l"monthl y.!.pay 
(p, r, t, mp, 

.!! r > lo ~g 1 • 0 
!~~~ print((newli 
~1§~ l2ng £~~1 mi 
longexp Cl~.!!g(t I 
12~g E~~l ap ¢ace 

fi 
gn~;; 

_g (mi - !.2.!!.9 1 
.!h~~ print ((new 
~1§~ in_! j := 0 
l2!!g £~~1 inter 
outf (standout, 

("month", "am 
format(standout 
¢this associate 
again : ¢return 
j +:= 1 ; ap := 

H. j ~ y ¢num 
2£ ap ~ mp 

!hg.!! out(stan 
~l~g ¢regular 
out (standout, 
9.2 !2 again 
fi 

fi-- .!! 

The output fro 

REPAYMENT SCHEDULE 
INTEREST RATE PER U 
MONTHLY PAYMENT 

MONTH AMOUNT 
1 906.62 
2 812.63 
3 718.01 
4 622.76 
5 526.89 
6 4 3 0. 38 
7 333.23 
8 235.43 
9 136.99 

10 37.90 
11 0.00 
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outf(standout, 
$l"repayment~schedule~of~a~loan~of~"9zd.2d, 
l"interest&rate~per~unit~"d.4d, 
"Lconverted~"2zd"~times~per~year", 

l"monthl y.!.paymen t~"7zd. 2d , "~for~"2zd" ~years. 11 $, 
(p, r, t, mp, y)) 

.!!: r > lo.ng 1.0 
!:!!g!!. print ((newline, "interest.Lra te..!.is~too,.!.high"l) 
g!§g .12~ £g~! mi = ¢monthly increment multiplier¢ 
longexp C!g!g(t 1 12) * longln(!QQg 1.0 + r 1 !gng t)), 
.12!9. £g~! ap ¢accumulated principal at the end of the month¢ 

if . (mi - 12!3 1.0) * p > mp 
.!!!~.!!print ((newline, "payment..!:,.does~not .£ cover..! interest")) 
~!§g in!: j := 0 ¢the month number¢, 
12!!9. £g~.1 interest ; y *:= 12 ; 
outf (standout, $1 2x8a, 3(12a)$, 

("month", "amount", "principal", "interest")) 
format(standout, $1 4zd, 3(7zd.2d) $) 

25 

¢this associates a format with the standard output file¢ ; 
again : ¢return to this point for each monthly calculation¢ 
j +:= 1 ; ap := p * mi ; interest := ap- p ; 

if j ~ y ¢number of years is satisfied¢ 
2£ ap 5 mp ¢the last payment is duet 

then out(standout, (j, 0.0, p, interest)) 
~j~~ ¢regular monthly payinen t¢ ~ : = a p - mp ; 
out (standout, (j, p, mp-intere~ - interest)) ; 
9.2 !:2 again 
fi 

fC-
!i 

The output from a run of the above program should be 

REPAYMENT SCHEDULE OF A LOAN OF ~~~ 1000.00 
INTEREST RATE PER UNIT 0.0800 C~ VERTED 4 TIMES PER YEAR 
MONTHLY PAYMENT 100. 00 <i£Y 1 YEARS. 

MONTH AMOUNT PRINCIPAL INTEREST 
1 906.62 93.3 8 6. 62 
2 812.63 94. 00 6.00 
3 718.01 94.62 5. 3 8 
4 622.76 95. 24 4. 76 
5 526.89 95. 88 4.12 
6 4 3 0. 38 96. 51 3.49 
7 333.23 97. 15 2. 85 
8 235.43 97.79 2. 21 
9 136.99 98.44 1. 56 

10 37.90 99. 09 0.91 
11 o.oo 3 7. 90 0.25 
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Review questions 

2.1 Declar e rs 

a) Is ofg.21 f~.fa a •declarer•? 
b) I s ofg.ff )£~.! f~~1o a •decla rer•? 
c ) Writ e down a •declare r• specifying the mode •reference to 

r e fer e nce to row of character•. 
d ) Is of 1f2£.!l.!~!:o a •declar e r•? 
e ) I s ofgf. f2f!!!~!:o a •declarer•? 
f) Is a£g.21 Ef~~o a •declarer•? 
q ) Can a va lu e be of mor e than one mode? 
h) Doe s a mode spe cify a •declarer•? 

2. 3 Lo cal generators 

a } How many •real-gener a tor s • iire there [R.fl.5.1.1 ]? 
b ) Write d own a •lo c a l- g en e rator• which posse s ses a value of 

mod e •reference to charact e r•. 
c ) Write down a •reference-to-boolean-local-generator•. 
d ) Is t here an •integral-local-generator•? 
e ) Is the followin g a production rule of the strict language 

fR.1.1.5.a]? 
•ref e r e nce to row of c haracte r local generator 

local symbol, actual format decl~rer.• 
f) I s •r e al- proce d ure-with-boolean• a mode [R.1.2.1)? 

2 .4 Evaluation of a generator 

a ) Does the •g e nerator• o]Q~ f~~J:o, after elaboration, pos s ess a 
r e al va lu e ? 

b) Does th e • ge ne rator• oloc f~~!o, after elaboration, poss e s s a 
v a lue? 

c ) Can a r e al va lue refer t o a •gen e rator•? 
d ) Can a r ea l va lue refer to a name? 
e ) Can a name refer to mor e than one value (R.2.2.1.5.a]? 
f) Can a name refer to more than on e instance of a value 

fR. 2.2.3.5.a]? 

2 . 5 I dentity dec l a rations 

a } Can two different externa l o biects possess the same internal 
o bje ct? 

b) I n th e r each o f o_!nt rn = 2o, can the Viilue possessed by orne 
be changed? 

c ) In the reach of oref real x 
. possessed by oxo-be changed? 

loc 

~ ) Write d own a •lo cal-generator• which, 
poss esses a value of mode •reference to 
r e al•. 

2. 6 Synt a x of identity declarations 

can the value 

~fter elaboration, 
row of procedure 

a ) Is D_!!!QQg ~ = f~~!o an •identity-declaration•? 
b ) I s D!;:gf f.EE~! xo a •decla ration•? 
c ) In the • d eclara tion • af_EEl !!!!: nno, what is the mode of ann o? 

d) w rite a • dec L 
procedure- real · 

2. 7 Formal par< 

a ) I s o £~21 · no a • : 
b) Is of )E£OC r eal 
c) Is o l o c reai~- a 
d) Is oin! 1~-a •fc 

2 . 8 An extens ic 

a) Write the • dec lc 
b ) Write the •decl< 
c) Wr i t e the •dec lc 

l anguage. 
d ) Wri te ore f r ef 1 

language-[ 'R:9.; 

2.9 An assign a1 

a } I s o2. 3 : = 3. 4 o 
b) Do es an •ass ign c: 
c ) Ca n an •assigr 

value? 
d) Is o (X :; 3. 14 ) 

2.10 Syntax of 

a) Is aloe re~1 := 
b ) Is oloc £~! f~~J 
C) Is aloe re.f f~~J 
d) What-Is the •sot 
e ) What is the mode 

of cref real Xl 
f) In the-reach- o1 

• assignation•? 

2.12 Dereferenc 

a) What is the e~ 

e x := yo and cl 
b) I s any dereferer 

xc , in the reac 

2. 13 Ini tialize 

a ) What are the me 
n = 2c and oini 

b) Make a diagram- ] 
in the reach oJ 

c ) Is it possible 1 
= £~21 : = 3. 1 41 

2.14 Program e1 
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d) Write a •declaration• of ope as a •reference-to-row-of­
procedure-real-mode-identifier•. 

2.7 Formal parameters 

a) Is c£~.2.! ' nc a •formal-parameter•? 
b) Is o[ ]£I.OC £~!!± pqrc a •formal-parameter•? 
c) Is oJQf r~~.!c a •formal-parameter•? 
d) Is c.!.!!! 1o a •formal-parameter•? 

2.8 An extension 

a) Write the •declaration• cr~! f~~.! xxo in the strict language. 
b) Write the •declaration• of~~! x, yo in the strict language. 
c) Write the •declaration• o£~~1 x, y := 3.14o in the strict 

language. 
d) Write o£gf £g! £g.2_! XX= _!gg fgf £g_2] + 3.14o in the e~tended 

languag e [R.9.2.a]. 

2.9 An assignation 

a) Is c2. 3 
b) Does an 
c) Can an 

value? 

:= 3.4c an •assignation•? 
•assignation•, after elaboration, possess a value? 
•assignation•, after elaboration, possess a real 

d) Is D (X := 3. 14) := 3. 15c an •assignation•? 

2.10 Syntax of assignations 

a) Is cJQf re~.! := 2.3c an •assignation•? 
b) Is c_!Qf £gf £g~_! := XD an •assignation•? 
c) Is c.!Qf £_g! fg~! :.:: 3. 14o an •assignation•? 
d) What is the •source• in the •assignation• ox .- y + 2o? 
e) What is the mode of the •assignation• cxx := xc (in the reach 

of oref real xx, real xc)? 
f) In the-reach- of c~oo_! t = !f]go, is ct := ~~.!§go an 

•assignation•? 

2.12 Dereferencing 

a) What is the essential difference between the elaboration of 
ex := yo and ox := 3. 14c? 

b) Is any dereferencing necessary in the •assignation• cxx := 
xc, in the reach of cr~! £~.2! xx, rg~.! xc? 

2.13 Initialized declarations 

a) What are the modes of orne and one in the •declarations• c.!!!! 
n = 2c and oint m := 2c? 

b) ~ake a diagrai-Illustrating the •assignation• cnn := n := 1c, 
in the reach of cref int nn, int no. 

c) Is it possible to apply-an extension(R.9.2.~] to Dfg~ £~~! X 

= £~~.! := 3.14c? 

2.14 Program example 
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a) How many occurrences of an •assiqnati,cn• are there in this 
•particular-program•? 

b) What coercions are involved in tpe e:j.abor~tion of ap ;= ap 
mpa? 

c) What is the effect of oj +:= la [R.10.2.11.d)? 
d) Ar e there dJ'1Y •i!lentifiers• which are •cqnstants•? 
e) What is the moqe of ope? 

3 Unitary clauses 

3. 1 In traduction 

The •uni tary-1 
blocks of the langu; 
as the statement or 
•unitary-clauses• a 
1 i Y o- 2 ) Do I 

•confrontations, fa . 
like •closed-clause: 
yo is a •formula•, 
and c( x := 1 ; y : : 

We now give a : 
the ordinary typefo1 
approximation to thE 
[R.8.1.1], but a si1 

unitary clause : 1 
tertiary : second< 
secondary : primal 
primary : base ; c 

conditional clat 

unitary-clat 
I 
r----
1 

tertiary 
I 
r----
1 

secondary 
I 
1----
1 

primary 
I 

r---~--~-
1 I 

base closed-c 

The purpose of th 
aspects of •unitary­
the classification 
classification will 
elaboration in a •cl 

ca .Q! 
where the modes o 
fact the order is as 

< 1 > Note that the op 
that it delivers a n 
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3 Unitary clauses 

3.1 Introduction 

The •unitary-clause• [R.B] is one of the basic building 
blocks of the language. It corresponds roughly to what is known 
as the statement or the expression in ALGOL 60. Some examples of 
•unitary-clauses• are, ox := y, x + y, re 2! z, 123c and c( x := 
1 ; y := 2 ) c. •Unitary-clauses• are classified further into 
•confrontations, formulas, cohesions, bases• and other objects 
like •closed-clauses•. Thus, ex := yo is a •confrontation•, ox + 
yo is a •formula•, ere 2! zc is a •cohesion•, o123c is a •base• 
and c( x := 1 ; y := 2 )o is a •closed-clause•. 

we now give a simplified syntax of •unitary-clauses•, using 
the ordinary typefont, to remind the reader that this is only an 
approximation to the syntax. The exact rules are in the Report 
[R.8.1.1], but a simplified syntactic tree is in figure 3. 1. 

unitary clause : tertiary ; confrontation. 
tertiary : secondary ; formula. 
secondary : primary ; cohesion. 
primary : base ; closed clause ; 

conditional clause ; collateral clause. 

unitary-clause 
I 
r--------------------~ 
I I 

tertiary confrontation 
I 
r--------------------, 
I I 

secondary formula 
I 
~------------------~ 
I I 

primary cohesion 
I 

r-----L--r---------------r-----------------~ 
I I I I 

base closed-clause conditional-clause collateral-clause 

Fig.3.1 

The purpose of this chapter is to study some of the simpler 
aspects of •unitary-clauses• and to observe the usefulness of 
the classification introduced by the syntax just given. This 
classification will help us to decide, for example, the order of 
elaboration in a •clause• like 

ca Qf b := c 2! d 2! e(f]- gc<t> 
where the modes of ca, b, c, d, e, fc and ego are unknown. In 
fact the order is as if we wrote 

< t> Note that the operator DQfD may be declared in such a way 
that it delivers a name. 
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o (a QE b) .- ( (c .2! (d of (e[ f)))) - g) a 
The pu~pose of this syntactic classification, then, is to 
~elieve the p~og~amme~ of the necessity for supplying these 
pd~entheses himself. In andition, it aids the compiler by 
excluding ce~tain mode dependent parsings. 

•Unita~y-clauses• which delive~ no value a~e known as 
•statements• [R.6.0.1.c], while othe~ •unitary-clauses• a~e 
known as •exp~essions• [R.6.0.1.b). This distinction is la~gely 
histo~ical and is of no significance in ALGOL 68. 

3. 2 Bases 

•Bases• a~e the most elementary •unita~y-clrluses•, so we 
begin with them. Some examples of •hases• are opi, 123, a[ i ], 
sin (x) o and o(: ~andom )c. A simplifiP.d syntax for base is 

base : mode in en t if ier ; nenota tion ; 
slice ; call ; void cast pack. , 

but the st~ict syntax of the Report should be studied 
r R.8.6.0. 1 ]. •Identifiers• a~e as in other programming 
lanyuages, e.g., o~andomo and nj14283co. •renotations• we have 
met befo~e in section 1.S, e.g., o758o is an •integnl­
denotation•, o3.1o is a •real-denotation•, o!~.!2~o is a 
•boolean-denotation•, o"q"o is a •character-denotation• 'l nd 
o"abc"o is a •string-denotaticn•. Thus we are already familiar 
with seve~al objects which are •bases•. The objects ox1(i )o and 
ox2[d:e,j]o a~e •slices•, asin(x)o is a •call• and o(: ~andom )a 
is an example of a •void-cast-pack•. The classification of these 
objects as •bases• tells us where they stand in the o~der of 
elabo~ation, and we shall see later, also, that a •base• is one 
kind of •coercend• [ R. 8. 2 ], i.e., an object upon which :lll 
coercions must be expended. But coe~cion is a subject for 
chapter:: 6. 

1.3 Identifie~s 

A •mode-identifier• [R.4.1.1.h] is so called 
distinguish it from a •label-identifie~•, which is 
Both of these •identifiers• might be described by 
simplified syntax rule 

in o~der to 
not a • base•. 
the following 

identifie~ : letter ; ioentifier, letter ; identifie~, digit. 
which means that an •identifie~· is what one expects it to be 
from the use of that te~rn in other prog~amming languages, i.e., 
a l e tter followed, perhaps, by any numter:: of letters or digits. 
The strict synt::t.x, in the Repo~t [R.~.1.1.b,c,d ), looks mo~e 
complex, fo~ a reason which will appea~ in later:: discussions 
concerning •field-selecto~s· [ R. 7.1.1.i ). Scme examples of 
•identifie~s· are, oalgol 68, a, a3b7d9, random, st pierre de 
chartreuseo (note that spaces are of nc significance within 

- •identifiers•) (~ R. l.1.£..ct.)• 

A •mode-identifier• usually possesses a v:~.lue. This value 
is the ~arne as that possessed by the same •identifie~• at its 
defininq occurrence. In the •assignation• ex : = y + 3o, the 
•mode-ioentifier::• oxn, supposedly in the reach of the 
•declar::ation• ofg!!J: xo, possesses a name which refers to some 

AI 

real value. The val 
possesses is, in fact 
figure at 2) possess;, 
its occurrence as the 
The effect of the elab 
DI~~1 X ; X := y + 3c 

0 
(2) 0 

0 

L 

where the identity 
indicated at 3. In thi 
occurrence of axe pos 
first occurrence of ox 
same instance of a 
consult the Report 
description of the 
•identifiers• is made. 

3.4 Slices 

We continue out 
•denotations•, but we 
go on to •slices•. In 
xl, [1:m,1:n]t~!!! x2c, 

OX 1 [ i ] 1 X 2[ i 1 j] 1 

A simplified syntax o1 
slice : primary, sui 
indexer : trimscrip· 
trimscript : trimmeJ 

but the strict syn · 
more than the skeletal 

The most importa1 
its first consti tue1 
•primary•. Also noti~ 
a •primary•. Followin• 
symbol•, represented 
•bus-symbol•, represe 
the above examples, 
ci,mOc. An •indexer• 
•comma-symbols•. A •t 
The objects cic and 
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In order to acco 
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written ax1 (i) a ( R. 9 



s 
f 
e 
n 

. e 
:s 
te 
Je 
12 

An ALGOL 68 Companion 31 

real value. The value (name, see figure 3. 3 at 1) which it 
possesses is, in fact, a copy [ R. 8. 6. 0. 2. a] of the value (see 
figure at 2) possessed by cxo at its defining occurrence, i.e., 
its occurrence as the •identifier• of an •identity-declaration•. 
The effect of the elaboration of the second occurrence of oxo in 
o£~~! x ; x := y + 3c is shown pictorially in the figure 3.3, 

X : = y + 3o 

0 (3) 0 

(2)o o <-(identity)-> o o{l) 
0 0 

I r------ , I 
'-->--1 r--<-J 

'------.J 

Fig.3.3 

where the identity of the two instances of the same name is 
indicated at 3. In this figure one should note · that the second 
occurrence of oxo possesses a copy of the name possessed by the 
first occurrence of cxa. Consequently both names refer to the 
same instance of a real value (R.2.2.2.1]. The reader should 
consult the Report [R.4.1.2] which contains a careful 
description of the method by which this identification of 
•identifiers• is made. 

3.4 Slices 

We continue our discussion of •bases•; the next are 
•denotations•, but we have seen these before in chapter 1, so we 
go on to •slices•. In the reach of the •declarations• a[1:n]£~~l 
xl, ( 1:m,1:n]£~~l x2o, the following are examples of •slices• 

ax1[i], x2[i,j], x2[,j], x1[2:n], x2[i,~O], x2[i]a 
A simplified syntax of •slice• is 

slice : primary, sub symbol, indexer, bus symbol. 
indexer : trimscript indexer, comma symbol, trimscript. 
trimscript : trimmer ; subscript. 

but the strict syntax of the Report [R.8~6.1.1] contains much 
more than the skeleton shown above. 

The most important point to notice about a •slice• is that 
its first constituent notion, e.g., the ox1a in ax1[i]o, is a 
•primary•. Also notice that a •slice•, being a •base•, is itself 
a •primary•. Following the •primary• of a •slice• is a •sub­
symbol•, represented by o[ o, then an •indexer• and finally a 
•bus-symbol•, represented by o]o. Thus all of the following, in 
the above examples, are •indexers•: aio, oi,jo, o,jo, o2:no, 
ci,mOc. An •indexer• is one or more •trimscripts•, separated by 
•comma-symbols•. A •trimscript• is a •trimmer• or a •subscript•. 
The objects cio and cjc are •subscripts• and c2:no and o~Oc are 
•trimmers•. A •subscript• is an •integral-tertiary• • 

In order to accommodate those users whose computers have a 
limited character set, a •slice• like oxl[i]o may also be 
written ox1 (i)o [R.9.2.g]. However, we shall not use this 
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possibility in this text since it then becomes difficult to 
distinyuish between a •slice• and a •call•, like osin (x)o. 

1.5 Multiple values 

A multiple value, as we have seen in chapter 1, is a row of 
values fR.2.2.3.3.a). We may represent it diagrammatically as in 

r------T------T------r------T------r------~-----, 

I I I I I I I I 
L-----~-----~-----~------~-----~------~-----~ 

Fig.3.5.a 

figur~ 3.5.a, though we shall see later that this picture is not 
comple te. Sometimes a name may refer to a multiple value, in 
which case we may think of it as a multiple •variable•. The 
difference between the effect of slicing a multiple •variable• 
and that of slicing a multiple •constant• is important and we 
shall now investigate it ty example. Suppose we have the two 
•decl aratio ns• o[1:3]:!!!.! n1 := {1, 2, 3)o and o[1:3Ji!!!: u1 = {1, 
2, 3)o. The object o(1, 2, 3)o looks :iild acts like a 
•denotation• of a row of integers, but it is actually a 

a[ 1 : 3 Jill~ u 1 = { 1 , 2, 3) o 

D ( 1 ) 
I 
~------r------T------1 
I I I I 
L------L------~------J 

Fiy.3.5.b 

a[ 1 : 3 ]!.!!!: n 1 . - { 1 , 2, J) o 

0 

..----<---0 0 
I o 
D ( 1) 

I 
~------T------T------1 
I I I I 
L------L------~------J 

• collateral-clause• [R.6.2l. The effect of the elaboration of 
these declarations is shown diagrammatically in figure 3.5.b, 
from which we see clearly that ou1o is a multiple •constant• and 
on1o is multiple •variable•. The "D" in the figure, at 1, 
indicates that a "descriptor" [ R.2.2.J.J.b], which descrites the 
elements, is also part of a multiple value. For the moment we 
shall ignore the presence of a descriptor. If we subscript a 
multiple •constant• we would expect to obtain a •constant•, 
e.g., ou1[2]o but if we subscript a multiple •variable•, we 
obtain a •variable• [R.2.2.3.5.c], e.g., on1[2]o. Thus on1(2] := 
4o is an •assignation• but ou 1[ 2] := 4o is not. This is shown 
dia~rammatically in fiqure 3.5.c, where the name possessed by 
on 1f 2lo {at 1) is constructed from the name possessed by on1 o 
and the •subscript• o2o [R.2.2.3.5.c]. The effect is obtained 
syntactically by the fact that the •primary• of a •slice• is in 
a weak position. It involves the concept of weak coercion 
f R.8.2 ], which we will discuss more fully in chapter 6. 

An 

au 1[ 2) 

r -r--:--,-
1 I 

L -L-----J-
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au 1[ 2) n 1 ( 2 ]a 

: 0 ( 1) 
0 0 

: 0 

r ·-,.--:--,- , r -,.--f--,- , 
I I I I 

L -L------.J- .J L -L----.J- .J 

Fig. 3. 5. c 

Observe now the use of the word •weak• in the rule 8.6. 1.1.a of 
the Report. 

3.6 Trimmers 

A programmer who is manipulating multiple values may wish 
to choose certain subsets of a multiple value and to allow an 
external object to possess that subset or a name to refer to it. 
For example, one eay wish to choose a row or a column of a 
matrix or even a submatrix of a given matrix. This may be done 
by using a •trimmer•, although, if that subset is to consist of 
a single element, then •subscripts• are sufficient. To 
illustrate the use of •trimmers•, consider the •declaration• 
o[1:3U!!.! n1 := (5, 7, 9)a. The •slice• an1(2]o is a •variable• 
referring, at the aoment, to •7•, but the •slice• an1(2:3]o is a 
•variable• referring to a row of two integral values •7• and 
•9•; moreover, being a •primary• itself, it may be subscriptej 
(if one insists on being foolish), so that on1[2:3][1]o is a 
•variable• referring to the same integral value •7• and the 
•formula• on1[ 2: 3]( 1] = n1[ 2 ]o possesses the value •true•. In 
fact, it will always be .true• no matter what assignments are 
made to on1o. Another way of saying this is that the •identity ­
rela tion• on 1[ 2: 3 )[ 1 ) :=: n 1[ 2 ]o possesses the value •true•. 

The effect of the •trimmer• al:uo is then to restrict the 
range of values of the subscript to run from the value of ole to 
the value of auo and to renumber, starting from •1•. If the 
renumbering from •1• is not desired, then the •trimmmer• should 
be written ol:uabo, where the value of abo is to be taken as the 
new lover bound. This means that, e.g., an1[2:3i0][0] :=: n1[2]o 
possesses the value .true •• We may think of this in the sense 
that if o~bo is omitted, then the default value of abo is •1•, 
but the fact that the •new-lover-bound-part• may be empty is 
actually built into the syntax [R. 8.6.1.1.f]. A further 
exaaination of the syntactic rule for •trimmers• reveals that 
the ala, the ouo and the a~bo may be omitted, i.e., the •lover­
bound• or the •upper-bound• or the •new-lower-bound-part• may be 
empty [R.8.6.1.1.f]. If the •lower-bound• of a •trimmer• is 
empty, then the lower bound of the •slice•, in that subscript 
position, is the same as that of the •primary• which is being 
slicea; if the •upper-bound• is empty, then the corresponding 
upper bound of the •slice• is the same as that of the •primary•; 
if the •new-lower-bound-part• is empty, then the subscripts of 
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the • s lice•, in that subscript position, will start from • 1-. It 
is even possible for all three to be empty at the same time. 
Thus anlf:] .-. n1[ 1:3 ]a will possess the value .true •• 
Extension 9.2.f, in the Report, allows the •up-to-symbol• to be 
elidej, under certain circumstances, so that the above 
•identity-relation• might be written on1[] :=: n1f 1:3 ]a. 

If the •declaration• o[ 1:m, 1:n)E_g~l x2o is used as that of 
an m bv n matrix, then ax2[i]o refers to the i-th row of the 
matrix, ox2f: ,j ]a, or even nx2[ ,j]o [R.9.2.f], to the j-th 
column and ox2fa:b,c:d]o may refer to a certain submatrix, if 
the values of oa, b, co and odo are appropriate. The rules for 
•trimmers• [R.B.6.1.1.f,q,h] should be examined to see that ol, 
uo and abo in ol:u~ba are all •integral-tertiaries •. In 
particular, a •formula• is a •tertiary• but an •assignaticn• is 
not, so that ox2 [ i +:= 1, j 2! r]o is an acceptable •slice• but 
ox2f i := i + 1, j 2! r lo is not. The latter, to be acceptable, 
sho uld appear as ox2[ (i := i + 1), j 2f r ]a. 

3. 7 Calls 

A simplified syntax of a •call• is 
ca ll : primary, open symbol, actual parameters, close symbol. 
actual parameters : actual ~arameter ; 

actual parameters, qomma, actual parameter. 
gamma : go on symbol ; comma symbol. 

but the strict syntax is to be found in the Report [R.8.6.2.1.a, 
5.4.1.c, 5.4.1.d). Examples of •calls• are osin(x), char in 
string ("a", i, s)o and of(n; a, b)a. rhese are familiar 
features from other programming languages, except perhaps the 
possibility of using a •go-on-symbol•, represented by o;o, to 
~epa rate the •actual-parameters• of a •call•. This possibility 
1. ~ ~res?.nt so that the programmer may, if he so wishes, match a 
s1.m1lar use of a •go-on-symbol• in the corresponding •routine­
denotation• fR.5.4.1l, where its use will fcrce the elaboration 
of the •actual- pa rameters• serially rather than collaterally. 
Thus, in the •call• of (n; a, b) n, the nna might be used as a 
bound for the arrays oao and nho, provided that a •go-on-symbol• 
was used in a similar position in the •routine-denotation• 
possessed by afo. Note that the •go-on-symbol• in a •call• has a 

·~ecorative effect only. It is the presence of a •go-on-symbol• 
1n the •formal-parameters-pack• of a •routine-denotation• which 
has the controlling effect. 

•Routine-denotations• are important and must be understood 
before we examine the semantics of •calls•; however, •routine­
denotations• will be discussed in chapter 5, so we will postpone 
our explanation of these semantics until that time. 

The most important point to notic~ about the syntax of a 
•call• is that its first constituent nction, e.g., asinn in 
osin(x)a, must be a •primary•. Also notice that a •call• itself 
is a •primary• so that ca (h) (c) (d)o might well be a •call• in 
which the order of elaboration is that suggested by 
o ((a (b)) (c)) (d) o. As we have already remarked, in section 3. 4, 
in some programs it may not be possible tc determine whether 
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ca(b)c is a •slice• or a •call•, without knowing the mode of 
cac, but since the parsing tree is similar for these tva, this 
is of no great hardship for the compiler. We shall see later 
that the object ci_! x < pi/2 then cos else sin fie is a 
•primary• and therefore oif x (-pl/2 then-cos else sin fi (x)c 
is a •call•. It so happens that DE2g!B r-:; s + 2-;-sin ~]~ (X)D 
is also a •call•, and perhaps some programmer will find it 
useful. 

3.8 Void cast packs 

An example of a •void-cast-pack• is 
o(¢~Qid¢: x := 2 * x + 1)c 

Its purpose is to void the mode of the •unit• contained therein 
in those situations where this is not done implicitly, such as 
in o; x := 2 * x + 1 ;o, where the •assignation• is turned into 
a •statement• by the fact that it is preceded and followed by 
•go-on-symbols•. An example where a •void-cast-pack• is needed 
is 

D££0C ¢!Q!g¢ p = (¢yg!g¢ : X := 2 *X + 1)o 
where ope is made to possess a routine, which contains an 
•assignation• but the •assignation• should not itself be 
elaborated until cpa is called. The object D££QE ¢yoig¢ p = (x 
:= 2 * x + 1)c is not an •identity-declaration• {the programmer 
might find it confusing anyway). A full explanation of the above 
•declaration• involves the concept of coercion which we shall 
take up in chapter 6. Readers whose curiosity is aroused may 
wish to follow the syntactic analysis suggested by 74a,b, 61e, 
81a,b,c,d, 820d, 823a, 860b, 834a, 61e, 81a, 820d, 828a, :t.n3 
those who could have found it for themselves need not be reading 
this book! 

A simplified syntax of •void-cast-pack• is 
void cast pack : 

open symbol, cast of symbol, unitary clause, close symbol. 
but the strict syntax is found in more than one place in the 
Report [R.8.3.4.1.a, 3.0.1.h, 7.1.1.z]. 

The •void-cast-pack• may appear to play the role of a 
•routine-denotation• in the case of those routines which deliver 
no value and have no •parameters•. An examination of the Report 
[R.5.4.1] will reveal that there are indeed no such •routine­
denotations•. There is however, a proceduring coercion and this, 
together with the •void-cast-pack• fills the need. But more 
about this later. 

3.9 Cohesions 

A •cohesion• is either a •generator•, e.g., or.~.!c, or a 
•selection•, e.g., ore of zc. The strict syntax is: 

•MODE cohesion MODE generator ; MODE selection.• 
[R.B.S.O. 1.a]. A •cohesion•, like a •base•, is also a class of 
•coercend• upon which all coercion must be expended, but we 
shall discuss coercion later. We have already examined 
•generators•, so we now turn to •selections• • 
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3.10 Selections 

An example of a •selection• is ere of zc in the reach of 
the •declaration• n§!~~ct (~~~1 re, im) zc. A simplified syntax 
of •selection• is 

selection : field selector, of symbol, secondary. 
but in the strict syntax of the Report [R.8.5.2.1.a) several 
metanotions are used with penetrating effect. In order to 
under s tand the meaninq of a •selection•, We need to know that 
som e values, unlike multiple values, may be built from several 
values whose modes may be different. Thus we may build a 
"structured" value consisting of one or more "fields" 
rR.2.2.3.21 in which the value of each field has, possibly, a 
different mode. The fields of a structured value are then 
selected by •field-selectors•, which look like •identifiers• but 
which, syntactically, are not •identifiers•. For example, in the 
•selection• ere 2f zc, the •field-selector• is crec. 

An example of a •declarer• which specifies a structurej 
mode is cstruct(real value, string name)c. Values of such a mode 
then consist-of two-fields, one-whose mode is •real• and another 
whose mode is •row of character•. If one wishes to obtain, or 
assiqn to, th e •real• field of a •variable• ere referring to a 
value of such a mode, this is done by using the •selection• 
evalue of ro; the string field is obtained by the •selection• 
ename Qf-rc. Note the similarity with the •slice• ox1[i ]c, where 
an element i s ~selected from the value of the •primary• according 
to the value of the •subscript• eie. In the selection cvalue 2! 
ro, an element is selected from the value of the •secondary• 
ere, using the •field-selector• cvaluec. There is, however, one 
essential differe nce in that the value of the subscript, eie, 
may vary dynamically, whereas the •field-selector•, cvaluec, 
cannot. This makes field selection an , inherently efficient 
process. 

As with a •slice•, the value of a •selection• from a 
•secondary• which is a •variable•, is also a •variable•, but the 
value of a selection from a •secondary• which is a •constant•, 
is a •constant•. Thus with the •declarations• D§~£~£!(iB! i, 
~22! b) ib := (1, !ryg)c and e §!fY£~(£g~1 r, fl!f c) rc = (1.2, 
"k") e, ci 2! ibn is a •variable• and ci Bf ib := 2c is an 
acceptable •assignation•; however, cc Qf r:co is a •constant• anj 
ec of rc := "m"c is not permitted. The reader may wish to note 
that- these effects are obtained, syntactically, through the use 
of the metanotion REFETY and the word •weak• in the rule 
8.5.1.1.a of the Report. The same remark applies to the rule 
8.6.2.1.a for •slice•. 

It is important to observe that a •selection• is always 
m~ de from a •secondary• and in this way it differs from a 
• s lic e •, since only a •primary• can be sliced. This means that 
the order of elabor:ation of the object ca 2! b[c]c must be the 
same as that of ca Qf(b[c])c, for ca Qf be is not a •primary•. 
Also, a •selection• is itself a •secondary• so that ca Qf b 2! c 
2! de may be a •selection• whose order of elaboration is 
suggested by oa 2! (b Qf (c Bl d)) c. Observe that if cdc is a 

•variable• then ca 
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•variable• then ca Qf b Qf c g! de is also a •variable•. 

3.11 Formulas 

A simplified syntax of •formula• is 
formula : operand, dyadic operator, operand 

monadic operator , operand. 
operand : tertiary. 

37 

but the strict syntax contains much more information (R.8.4.1]. 
•Formulas• with two •operands• are known as •dyadic-formulas• 
and those with one •operand• are •monadic-formulas•. Since the 
same symbol may be used both as a •dyadic-operator• and as a 
•monadic-operator•, as for example inc(- a - b)c, one must 
rely upon some context to determine the full extent of a 
• formula•. 

A major new feature of ALGOL 68 is the fact that operations 
may be declared. This means that any •operator•, e.g., c+c, may 
not mean what we think it means unless we have examined the 
•ranges• in which it occurs. An example of an •operation­
declaration• is 

DQE Q£ = (£~~± a, b)£~~1 : !! a > b !h~~ a else b !!c 
but since this involves •routine-denotations•, which we have not 
yet discussed, we shall postpone a full examination of 
•operation-declarations•. 

The syntax given above shows that an •operand• must be a 
•tertiary•. Also, the syntax given in section 3.1 [R.8.1.1.b] 
shows that a •formula• is itself a •tertiary•. From this we may 
deduce that the elaboration of the •formula• oa Qf b[i] + cc is 
in the order suggested by c(a Qf (b[i])) +co. The reader may 
find the following summary useful: 

a •primary• may be sliced and a •slice• is a •primary•, 
a •secondary• may be selected from and a •selection• is a 

•secondary•, 
•operands• are •tertiaries• and a •formula• is a •tertiary•, 

[R.8.6.1.1.a, B.6.0.1.a, 8.5.2.1.a, 8.5.0.1.a, 8.4.1.f, 
8.1.1.b,c,d]. 

A set of standard operations, which the Frogrammer might 

DYADIC MONADIC 
-------------------------------------------T----------------
1 2 3 4 5 6 7 8 9 1 (10) 

c=~=--~~--QD----:----~--------;----~E --i--:-~-=~-~-a~;n ~~ ~ 
+:= ~ ~ + + 1~~ I ~Q§ ~!~ £~]£ . 
*:= ~ +: ~E~ I !~Q ~E~ 1~~ ~]~ 
;:= > I 1~§ I ±~~g ~ggrt 
+:= ~±~! ~E§ 1 QQQ §!gn £ggng 
+ : : = 1 !~ !! fgnj 
+=: I Qj:Q fi~c 

------------------------------------------~----------------

Fig.3.11 
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expect of any programming language, is [:rovide:i ( R. 10.2] and 
standard priorities (from 1 to 9) are Jiven (R.10.2.0). This 
standard set is to be found, in summary, in 8.4.2 of the Report 
and is reproduced here for convenience. There are nine 
priorities (from 1 to 9) for the •dyadic-operators•. The 
•monadic-operators• all have the same priority (effectively 10) 
and when used consecutively, are elaborated from right to left. 
A typical •priority-declaration• is 

tl£!;:i2£i11 + = 6o 
and in fact, this is to be found in the •standard-prelude• 
fR.10.2.0.a). Operations whose •operators• have the highest 
priority are elaborated first. This means, e.g., that the 
•formula• oa < b = c > do is elaborated in the order suggested 
by o(a < b) (c > d)o. Also, the value of c( -1 EE 2 + 3 )c and 
c( 3- 1 EE 2 )o are •4• and •2• respectively, a fact which may 
come as a surprise to users of some other languages<t>. In 
;ustification of this choice one must observe that, when 
•operators • and their priorities may be declared, a simple rule 
for the priority of •monadic-operators• is essential. Consider, 
for example, the formula 

We know immediately 
suggested by 

ex ~ Q ~ y d e zo 
that the order of 

ox ~ ( ~ ( f y ) ) Q ( ~ z ) c 
since the monadic operations are performed 
priorities of the •dyadic-operators• o~o and 
doubt which may remain. 

elaboration is that 

, 
first, while the 

DQD will settle ~ny 

It would tak e too long to describe all the operations which 
are provided in the •standard-prelude•, and indeed this 10ould be 
a waste of time, for their precise definition is given in 
Chapter 10 of the Heport. We shall be content with mentioning 
some of the less familiar •operators•, beginning with those of 
the hiqhest priority. i.e., the •monadic-operators•. The 
•ope rator• o1~n~o operates en an integral, a real or a complex 
value delivering a value whose length (precision) is increased, 
while a~Q2£1n has the opposite effect. In some installations 
this may mean the change from single frecision to double 
precision and the reverse [R.10.2.3.q, 10.2.4.n, 10.2.7.n]. One 
should be careful to distinguish between o1~gg 1.0o which is a 
•formula•, and c!Qgg 1.0o, which is a •denotation• 
rH.5.1.0.1.b). The value of DQQQ 4o is •false• (R.10.2.3.s]. The 
value of obin 5c is that of o101o, i.e., obino operates on 
inteqral ~;Iues and delivers--~its [R. 10.2.~:I]. The value of 
oabs "a"o is some integral value, which is implementation 
dependent, and that of o,!;_~]! ~~§ "a"o is •a•, i.e., o~~f! !~§o 
is the identity operation on any character [R.10.1.j,k]. Also, 
D~Q§ !EE~ = 1, ~Q~ f~1~~ = Oc [R.10.2.2.f] and D~Q~ JQJ = 5o 
f R.10. 2. 8.i ], all have the value .true•; in bet, oQ!g ~Q~D is 
the identity operation on certain bits values. The operator 
cbtbo converts •row of boolean• to bits, e.g., cbtb(true, false, 
!IQg) = lQJo [R.10.2.8.1] and o~!~o converts •row-of--character• 
to bytes fR.10.2.9.dl. The inverses of oQ!Qc and of.t£o are not 

<t> Except for users of, e.g., JOVIAL, SNOBOL and APL. 
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necessary since that job is done by coercion (R.8.2.5. 1.c,d]. 
The •monadic-operators• ay~, gg~na and a/a operate on semaphores 
and are concerned with synchronization (parallel processing). we 
shall not discuss them further here [R.10.4]. The operators 
cy~.Q, .J:wb, .!!~2a and a]J!.§a are concerned with arrays. We may best 
illustrate them by considering the •declaration• c[2:5 !1~!Jin! 
n1c, so that on1o is a •variable• referring to a row of integral 
values whose index has a lower bound of •2•, which is fi~ed and 
an upper bound of •5•, which is flexible. Then DQ£Q n1 = 5, 1~.Q 
n1 = 2, Q£2 n1 = ~~ls~, 1~2 n1 = !fQ~c< 1 >. These •operators• are 
also dyadic and a1 Q£~ n1 = .!!EQ n1o, for all arrays an1o, while 
the •formula• o2 l!£Q n2c delivers the value of the upper bound 
in the second subscript position of the array cn2o. 

There is one standard •dyadic-operator• o!o or e! c of 
priority 9 (the programmer may create more if he wishes). The 
value of ox i yo is a complex number with real part cxc and 
imaginary part eye [R.10.2.5.f]. In the standard •declarations• 
the result of the •dyadic-operator• a;o, •divided-by•, is real 
(or complex) and that of c+o is integral (integral division of 
two integral operands). The operator a~1~~e delivers an element 
from bits or bytes, e.g., o2 elem 101o delivers •false •• Note 
that o2 g.J:~! b := !rugc is-not-an •assignation• (R. 10.2.8.k, 
10.2.9.c]. Manipulation of bits can be achieved with the 
operators DQ£, ~g~. QED and ong!c (R.10.2.8.d,e,h,m]. The value 
of on +: me is one modulo erne, i.e., the remainder obtained on 
dividing one by cma [R.10.2.3.n]. Apart from the fact that ~Q§D 
is an operator on real, integral and complex values, rather than 
a •call•, i.e., it is not cabs (x) c, the remainder of the 
•operators• are probably familiar to most programmers with the 
exception of a set of •operators• of lowest priority •1•. A 
typical example is c+:=c, which ve can explain by saying that 
the •formula• ex +:= 1c has the same effect as ex := x + 1c. 
Another •dyadic-operator• with priority •1• is c+=:o, which may 
be used with two •operands• of mode •row of character• 
[R.10.2.11.r,t]. After elaboration of the •formula• cs +=: to, 
in the reach of D§!Ei.!!9. s :="abc", t := 11 def 11 c, we have cs = 
"abc"c and et = 11 abcdef 11 o. on the other hand, after the 
elaboration of the •formula• es +:= "g"a, we have as = "abcg"c. 

The reader should be careful to note that several 
•operators• have more than one representaticn, e.g., the •plus­
i-times-symbol• has three representations and the •up-symbol• 
four [R.3.1.1.c] (morevoer, many representations are not 
available in this preliminary edition due to the limitations of 
the TN print chain). 

3.12 Confrontations 

There are four kinds of •confrontation• according to the 
strict rule 

<t> Here it is more convenient to say c2*2 = 4c rather than the 
longer but correct statement o2*2 = 4a possesses the value 
•true •• 
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•MODE confrontation : MODE assignation 
MODE conformity relation 
MODE identity relation ; MODE cast. • 

[R.8.3.0.1.a]. The object ex:: y + 2c is an •assignation•, cr 
::= ic is a •conformity-relation•, ca ::: be is an •identity­
relation• and creal : ic is a •cast•. Enough has been said about 
•assignations• -already in sections 2.9 and 2.10. •Conformity­
relations• have to do with united modes, which we have not ye t 
introduced, so it is as well to postpone this discussion to 
chapter 7. We shall therefore confine our attention here to 
•identity-relations• and •casts•. Before passing to these, we 
should see that since a •confrontation• is not a •tertiary•, and 
therefore not an •operand•, the elaboration of the •assignation• 
cxx 2~ yy := xc is done in the order suggested by c(xx 2~ yy) := 
xe. Such an •assignation• might well be possible if the 
•operator• core has been declared in such ~ way that it will 
deliver a name: 

3.13 Identity relations 

There are two •identity-relators•, the •is-symbol•, 
represented by c:=:c and the •is-not-symbol•, represented by 
e:l:c. A simplified syntax of the •identity-relation• is 

identity relation : tertiary, identity relator, tertiary. 
but the strict syntax of the Report contains more detail to 
account for the balancing [R.6.4.1] of modes. 

The elaboration of the •identity-relation• is normally 
quite simple. We ask the question whether two names, of the same 
mode, are the same. This means, in most implementations, asking 
whether two storage addresses are the same rather than whether 
they have the same content. As an example, suppose the 
•declaration• cf~~! x, yc has been made. The •identity-relation• 
ex - yc then has the value •false., despite the possibility 
that we may have elaborated the •assiqnations• ex := 3. 14, y := 
3.14c. This is because the •declaration• cf~~! xc (strictly cfgf 
£~~! x = lof £~~!c) involves the elaboration of the •generator•, 
c!Q£ fg~}c, which creates a name different from all other names 
[R.7.1.2.d Step 8]. The same applies to C£~~! yc. Hence, the 
name possessed by cxc is not the same as the name possessed by 
eye. After the •declaration• cref real a = xc, the name 
possessed by cac is the same as the-name-possessed by cxc, but a 
different instance of that name. Consequently, the value of the 
•identity-relation• ex :=: ac will be •true• and will remain 
•true• no matter what assignments are made to cac or to cxc. 
Notice that an assignment to cac is at the same time an 
assignment to cxc. 

Now suppose that the •declaration• c£~! !B! ii, JJ, !B~ ic 
is elaborated followed by the •assignations• cii := i, jj := ic. 
The •identity-relation• cii :=: jjc possesses the value •false., 
for a similar reason to that explained above, but the •identity­
relation• cjj :=: ic then possesses the value •true•. That this 
is so can be seen by a close examination. We present this in 
figure 3. 13. we see in the figure at 1 and 2 that the a priori 
modes of the •i3entifiers• en each side of the •is-symbol• are 
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not the same. Since an •identity-relation• must have 
•tertiaries• of the same mode (R.8.3.3.1.a] (each of which 
begins with •reference-to•), there is a coercion, known as 
"dereferencing" [R.8.2.1.1 ], of the •base•, cjjc (see the figure 
at 3), whereupon the •identity-relation• delivers the value 
•true• (see the figure at 4). Observe that there is, strictly 
speaking, a coercion on the right also, but since the a priori 
mode and the a posteriori mode are the same its semantic effect 
is therefore absent. Since the dereferencing may occur either on 
the left or on the right, but not on both sides, there are two 
alternatives in the strict syntax of •identity-relations• 
[R.8.3.1.1.a]. The reader should notice that in this syntax, one 
of the •tertiaries• is "soft" and the other is "strong". 

boolean-identity-relation •••••••••••••• 
I (4) 

r-------------------+-------------------, •true• 
I I I 

strong-reference-to- 1 soft-reference-to-
integral-tertiary identity-relator integral-tertiary 

I I I 
strong-reference-to- 1 soft-reference-to-

integral-base......... 1 integral-base 
I I I 

(coercion) (3) 1 (coercion) 
I (1) I I 

reference-to-reference 1 reference-to-(2) 
to-integral-base 1 integral-base 

~- ~- ~ 

cjj ic 

0 0 0 

0 0 

0 

o o------>-----o o <---·(identity)---> 
0 0 

I I 
I ..------, I 
L---)----1 1----(---J 

L-----.-J 

Fig. 3. 13 

In the case of cjj :=: ic, the cic is soft and the 
strong. This is a matter concerned with coercion 
balancing of modes which will be discussed in chapter 6. 

3.14 Casts 

The object 
creal : 2c 

cjjc is 
and the 

is a trivial example of a .~;ii• [R.8.3.4. 1.a], but it is good 
enough to illustrate that a •cast• consists of a •declarer• 
followed by a •cast-of-symbol• followed by a •unitary-clause•. 
The purpose of a •cast• is to coerce the value of its •unitary­
clause• into a value of mode specified by its •declarer•. The 
example given is trivial because its value could be obtained 
more easily from the •real-denotation• c2.0c. 
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•Casts• play an important role in •routine-denotations•, 
which are discussed in chapter 5. We shall see also that they 
are used instead of •routine-denotations• for those routines 
which lack •parameters•. Otherwise, a •cast• is occasionally 
useful to effect a coercion which is not implied by the context. 
For example, o~!:±:!!!Sl : "a"o is a multiple value, i.e., a row of 
characters with ona element, and objects like o(f~f f~±l : next 
of cell) .-. nile are essential to list processing (see 
R~11.12). A •cast; may have a •void-declarer•, in which case it 
is a •void-cast•, e.g., o:x .- yo. A •vcid-cast• yields no 
value. An examination of the syntax will reveal that a •void­
cast• occurs only as a •void-cast-pack• [R.8.6.0.1.b), e.g., o(: 
x := y)a, or as part of a •routine-denotation• [R.5.4.1.h), 
e.g., o: get bin(stand back, x)o in o([ l!!!.!Y.E~ x) : get 
bin(standback, x)o [R.10.5.4.2.a]. A •void-cast-pack• is a 
•base•, as we have already seen in section 3.8. •Casts• which 
are not •voi d-casts• "envelop" [ R. 1. 1. b. j] a mode and are 
•confrontations•. One reason for the exclusion of •void-casts• 
from •confrontations• is the ambiguity which might otherwise 
lurk in the object ox :=: yo or ox := :yo. 

For those •casts• which envelop a mode, a simplified syntax 
is 

cast : virtual declarer, cast of symbol, unitary clause. 
fR.8.3.4.1.a). A •virtual-declarer• [R.7.1.1] is a •declarer• in 
which all •indexers• contain •bounds• which are empty. To find 
typical examples of •casts• we need only examine •declarations• 
involving routines, of which there are a large number in Chapter 
10 of the Report. one of them is 

DQ.E ~Q~ = (Q221 a)1nt : ~! a .!~~!! 1 ~!~~ 0 fio 
f R.10. 2. 2.f J in which the •cast• is oifl!: !.f a .!.!:!~.!! else 0 
_uo. 

The elaboration of a •cast• is that of its •unitary-clause• 
fR.8.3.4.2), always remembering that the mode of the value 
delivered, if any, is that specified by the •declarer• of the 
•cast•. Since the a priori mode of its •unitary-clause• is often 
not the same as that specified by its •declarer:•, the final 
steps in the elaboration of a •cast• often involve some kind of 
coercion. For this reason it will appear frequently in our 
discussion of coercion in chapter 6. 

Because a •cast• is a •confrontation• and therefore also a 
•unitary-clause•, it follows that of~~± : £§~! : xo is a •cast•, 
but its value is the same as that of n£~~1 : xo. Note that a 
•cast• which envelops a mode is not a •primary• or even a 
•tertiary•; consequently, 0~~_! n~!!l : XX := 3.14o is not an 
•assignation•. The effect perhaps intended could be obtained by 
w r it in q o (~~! .E~!! 1 : x x) : = 3 • 1 4 o • 

3.15 Proqrarn example 

<t> ·rhe ALGOL 60 version of this procedure is 
G. F. Schrack. 

du € to 
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The following is a •procedure-denotationeCt>. The routine 
which is possessed by ape calculates the real coefficients of a 
polynomial whose zeros are the elements of a given complex 
vector aza. These zeros may be real or complex, but if complex 
must appear consecutively as conjugate pairs. For example, if 
the given vector is a(1, 0 ! 1, 0 i -1)a, then the polynomial 
will be az**3 z**2 + 7 1a. Thus, in the •range• of 
a[1:3]CO!El w := (1, 0 i 1, 0! -1)c, the value of the •call• 
cp(w) a will be that of a ([]£gal : (1.0, -1.0, 1.0, -1.0))[~0 )c • 
The existence of a non-local •procedure•, cerrorc, is assumed, 
for use upon encountering invalid data. 

DP£2£ p = (£§!( 1:]£Q!E1 Z)[ ]£§~1 : 
¢calculates the coefficients of the real polynomial whose zeros 
are the elements of the vector zt 
!!~!~ [ 0: J!.EQ z ]~~~1 a ; a[ 0 ) : = 1 ; !.!!!: i : -= 1 ; 
tthe coefficients are calculated into the vector a¢ 
~Ell~ i ~ YE!2 z ~Q 
~~gin C0.!!£1 zi = z( i ] a[ i] : = 0 ; 
if i~ zi = 0 
then t a real zerot 
--fO£ k !£~! i QY -1 !2 1 Q2 

a[k] -:= ~~ zi * a[k-1] 
~12~ ¢a pair of complex zerost 

if i = ~.E~ z !he~ error !i ; 
if zi # £2~j z[i+:=1] !h~~ error f! 
re~1 s = ~g zi ** 2 + im zi ** 2, t = 2 * !~ zi 
a[ i] : = 0 ; 
fQ£ k !£~! i QI -1 12 2 Q2 

a[k) -:= t * a[k-1]- s * a[k-2]; 
a[ 1 ] -: = t 

fi ; ¢and now for the next onet i +:= 1 
end tthe iteration on it ; 

¢the-coefficients are now ready in the vector at 
a ~~~a 

From c[ ]£§~! :a, on the first line, to the final ag.ngc is 
the •cast• nf a •routine-denotation• [R.5.4.1.b]. It begins with 
a[ ]!§~1 :a to ensure that the value delivered by the routine is 
of aode •row of real•. Note the use of the •operator• ayp~c in 
the •declaration• c[O :y~ z ]£§~1 ac, which creates a vector 
•variable• with index running from •0• to the ripper bound of 
azc. The •declaration• D£2~.El zi = z(i]c [R.10.2.7.a] indicates 
that, for each value of cia in the iterative statement, czic is 
a constant. This avoids repeated calculation of nz[i]c later. 
Observe that, in the •formula• czi # £2~j z(i+:=1]c, the 
•formula• ci+:=1c is elaborated first. rhe value of the 
•variable• cia is thus incremented by 1. The value of this 
•formula• is the name possessed by oi+:=1c, which is the same as 
the name possessed by cia. It is then dereferenced. The object 
cz( i+:=1]a is a •slice• whose value is the next zero of the 
polynomial sought. The •declaration• D£~~! s = !§ zi ** 2 + !! 
zi ** 2a declares a •real-constant• esc whose value is the 
square of the modulus of one of the conjugate pairs. The value 
delivered by the routine is that of cac; conse1uently cac 
appears as an •expression• preceding the final D~.!!~D. 
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Review questions 

3.1 Introduction 

a) Is a •cohesion• a •primary•? 
b) Is a •closed-clause• also a •tertiary•? 
c) Indicate by parentheses the order of elaboration of oa + b of 

c[ d] - eo. 
d) What is the difference between a •statement• and an 

•expression•? 
e) Is a •base• also a •unitary-clause•? 

3.2 Bases 

a ) Is ox + yo a • b a se • ? 
b) How many kinds of • bases• can be distinguished? 
c) List all the •bases• in the object 

c ( a( i 1 > b .Qf c 1 sin (X) I cos (X + pi/2) ) c. 
d) Is oJ. o a •base•? 
e) Is oa(b)c a •call• or a •slice•? 

3.3 Identifiers 

a) List the •identifiers• in the object ol:ca :=char Qf file Qf 
f + "aS" c. 

b) What is the mode of axe in creal x := 3. 14c? 
c) What is the mode of on2~--In o(1:3, 1:4J!!!! n2 = m2[3:5, 

3: 6lo? 
d) Do cue and ova have the same mode in the •declaration• 

r 1:10Jfh2~ u, [ 1:1o fJ~!lfE~f vc? 
e) Is c$linec an •identifier•? 

3. 4 Slices 

In the reach of the •declaration• o[1:m, 1:n]f~2J x2, y2c: 
a) is cx2( 1 ][ 1 ]c a •slice•? 
b) is cx2[ 1]c a •slice• and if so what is the mode of its value? 
c) is c.J2gg,!__!! x2 end[ 1, 1 )a a •slice•? 
d) is cif i > 0 ~liin x2 ~}§~ y2 fi [ 1,1 ]a a •slice•? 
e) Which-of the following can be subscripts? 

o35o, citem Q!. ao, oi + n * 2o, oi := 2o, ni +:: 2c. 

3.5 Multiple values 

In the reach of the •declaration• o(1:m, 1:n].!~~1 x2, [1:3Ji!!! 
u1 = (1, 2, 3)o: 
a) is oulo a •variable•? 
b) is ox2[ 1, 2]o a •variable•? 
c) is cu1 [ 2) :: 2o an •assignation•? 
d) is cx2[2 ][ 1) .- 3.14o an •assignation•? 
e) is ox2[ 1, 1) := 3.14o an •assiqnation•? 

3.6 Trimmers 

Using the •declar 
a) what is the value 
b) what can be said a 

cx2[2:3][2,1] = x 
c) what is the value 
d) what is the value 
e) is cx2[i::1:j+::1, 

3. 7 Calls 

a) Is a cos (x :: pi/4) 
b) Is or a ndomo in ex 
c ) Is 0 cos ( X ) 0 I ll 

d) Under what condi tj 
e) Under what conditi 

3. 8 Void cast pac 

a) Is a •void-cast-p; 
b) Is o (: x) : = yo aJ 

c) Is ax:=(: y)o a1 
d) Is a(: (x)) a a •vo : 
e) Is ce£.Qf p := X :: 

3. 9 Cohesions 

a) Is a •cohesion• a 
b) Is a •cohesion• a 
c) Is o (x + y) c a •c' 
d) Is a[ 1 :3 }!".ef stru 
e) Under what -condit' 

3.10 Selections 

a) Is a •selection• 
b) Is the oao in oa 
c) Indicate by paren 

oa Qf b [c]c and 
d) Is o (a of b) of c 
e) Is ca Qf-( b 2! c 

3.11 Formulas 

a) Is a •formula• a 
b) What is the value 
c) What is the value 
d) Is o4 + :: 2 c a •1 
e) What is the valuE 

3. 12 Confronta t : 

a) Is a •secondary• 
b) Is ox1(i:=i+1) a 
c) Is a.r~alo a •con : 
d) Is ae!"..Qf rando1 
e) Is op .- X . -. Y' 
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Using the •declaration• given in 3.5 abcve: 
a) what is the value of DU 1[ 2: )o? 
b) what can be said about the •formula• 

ox2[2:3 )[2,1) = x2[2, 1 ]o? 
c) what is the value of ou 1[: 21!0 )[ 1 ]o? 
d) what is the value of ou1[~2I3Jc? 
e) is cx2[i:=1:j+:=1, 3)c a •slice•? 

3. 7 Calls 

a) Is ccos (x : = pi/4) c a •call•? 
b) Is crandomc in ox := randomc a •call•? 
c) Is ocos( x > 0 1 x 1 pi/2 )c a •call•? 
d) Under what conditions is ca (b) o in oa (b) : = CD a •call•? 
e) Under what conditions is ca (b) (c) c a •call•? 

3.8 Void cast packs 

a) Is a •void-cast-pack• a •primary•? 
b) Is c (: x) : = yo an •assigna tion•? 
c) Is ox := (: y) o an •assignation•? 
d) Is o(: (X))o a •void-cast-pack•? 
e) Is OE£2f p := x := 3.14o a •declaration•? 

3.9 Cohesions 

a) Is a •cohesion• a •primary•? 
b) Is a •cohesion• a •tertiary•? 
c) Is D (x + y) c a •cohesion•? 
d) Is cr1:3 ~~f §~fY£!(~~! a, f~~1 b)c a •cohesion•? 
e) Under what conditions is oa 2! b := co an •assignation•? 

3.10 Selections 

a) Is a •selection• a •primary•? 
b) Is the Dac in oa of bD an •identifier•? 
c) Indicate by parentheses the order of elaboration of 

Da ~f b [c)c and of oe 2f g(x)o. 
d) Is o (a of b) of CD a •selection•? 
e) Is Da 2f-( b 2! c )o a •selection•? 

3.11 Formulas 

a) Is a •formula• a •tertiary•? 
b) What is the value of D2 el~~ Qlrr 5o? 
c) What is the value of clwb- 3.14c? 
d) Is D4 +:= 2o a •formufa;-and if so what is its value? 
e) What is the value of o~(1<2~~g3>4~£5=617>8Qf !!Y~)c? 

3.12 Confrontations 

a) Is a •secondary• a •confrontation•? 
b) Is ox1[i:=i+l] a •slice•? 
c) Is c_£~alD a •confrontation•? 
d) Is OEf2f randomo a •confrontation•? 

45 

e) Is cp := x :=: yo an •identity-relation• or an •assignation•? 
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3.13 Identity relations 

In the reach of the •declaration• ai~! i, j 
i, j j : = ia : 
a) what is the value of oii :=: jja? 
b) what is the value of ai : =: j ja? 
c) what is the value of ai :~: ja? 
d) Is ax ·=· 3.14c an •identity-relation•? 
e) Is ox :=: x 1[ 2 ]a an •identity-relation•? 

3.14 Casts 

a) Is a •cast• a •primary•? 
b) Is 11!!!! : 3. 14o a •cast•? 
c) Is ax : = :yo an •assig na tion• or an •i dentit y-re lation•? 
d) Is of1:1]real: 3.14o a •cast•? 
e) Is D!:gf i.TI!:; : ii := 2c an •assiynation•? 

3.15 Proqram example 

a) How many occurrences of a •cohesion• are in this •particul:lr-
program•? 

b) How many occurrences of a •slice• are there? 
c) Is eta a •constant• or a •variable•? 
d) What is the mode of asu? 
e) How many occurrences of an • iden ti ty-relation• are there? 

4 Clauses 

4. 1 Condi tiona! cla1 

The •conditic 
programming concept 
It is present in so1 
for a choice in 
clausas•, depending 
a •conditional-clau: 

[]~ 
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4 Clauses 

4.1 Conditional clauses 

The •conditional-clause• (R.6.4] is a fundamental 
programming concept or primitive pertaining to flow of central. 
It is present in some form or other in most languages and allows 
for a choice in the elaboration of one out of two •serial­
clauses•, depending on the value of a •condition•. An example of 
a •conditional-clause• is 

eif a > b then a ~l§g b fie 
or, using another representation 

c( a> b I a I b )e , 
which therefore has the same meaning. A simplified parse is 
shown in figure 4.1.a. 

conditional-clause 
I 

r------r---------------+------------r-----------, 
I I I I I 

if-symbol condition then-clause else-clause fi-symbol 
I I I I I 
I I r-------~, r--~-----, I 
I I I I I I I 
1 serial- then- serial- else- serial- 1 
1 clause symbol clause symbol clause 1 

-l. _L_ -~-- ..1 
__.l. __ 

.J.. J.. 

llif a>b !!!~.!! a ~1§~ b fio 

Fig. 4. 1. a 

There are two features of the •conditional-clause• which 
are noteworthy. The first is that such a •clause• is closed, in 
the sense that it begins with an •if-symbol•, represented by 
aifc or e (e, and ends with a •fi-symbol•, represented by of!o or 
e)e. As a consequence of this, a •conditional-clause• can be, 
and is, a •primary• and is therefore found in syntactic 
positions which might otherwise be considered unusual in some 
programming languages. The second is that no essential 
distinction is made between •conditional-expressions• an1 
•conditional-statements•. The only difference is that, if a 
•conditional-clause• is used as a •statement• [ R.6.0.1.c), then 
its value is voided; otherwise, it may be an •expression• 
[R.6.0.1.bl<t> and may deliver a value. There is only one 
genu1ne syntactic rule [R.6.4.11. This merging of concepts 
permits •conditional-clauses• like 

e!! a > 0 !hgn sqrt(a) ~1~~ ~2-12 error f!e 
which may be used in a situation like 

ea1 :=if a> 0 !h~.!! sqrt(a) gl§g ~2-~2 error fie 

<t> Note that rules in the Report marked with an asterisk are 
present only for the convenience of the semantic description of 
the language. The notions involved never appear in the parse of 
a • program•. 
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Some uses of a •conditional-clause• which might be 
considered unusual, but which stem from the fact that it is a 
•primary• are: c( p I x I y ) := 2.3 , ( q 1 cos 1 sin ) (x) ( 
r I x I y ) + ( s I u I v ) c, in which we have used, for 
preference, the shorter representations. 

A simplified syntax of the •conditional-clause• is 
conditional clause : 

if symbol, condition, then clause, else clause, fi symbol. 
condition : serial clause. 
then clause : then symbol, serial clause. 
else clause : else symbol, serial clause. 

but the strict syntax in the Report [R.6.4.1] should be studiej 
also. One should observe that a •conditional-clause• contains 
three •serial-clauses• (see figure 4.1. a). Any one such •serial­
clause• may contain •declarations• and forms a •ranye• 
fH.4.1.1.el. Since a •serial-clause• may contain more than one 
•u~itary-clause•, this means that frequent use of a beg!.!! ~!!9c 
p:u.rs (•packages•), as in l\LGOL 60, is not necessary. An example 
of a •conditional-clause• containing a non-trivial •condition• 
might be: 

ci! §!f.!.!!.9. s ; read {s) s = password 
!h~!! .9.Q_!Q reqular 
~1§~ gQ_!Q irregular 
_!;!c 

where the value of the •condition• is that of its last 
os -= passwor-do. 

A •conditional-clause• is elaborated by first elaborating 
the •condition•. If the value of the •condition• is •true•, then 
the •then-clause• is elabor-ated; otherwise, the •else-clause• is 

• t rue•-->--, r------->-------, 
I I I 

I v 
0 ( X ) 0 X -x )c 

I 
•false•--------->-------J 

Fig.4.1.b 

I 
I 

elaborated (see figure 4. 1.b). In the first instance, the value, 
if any, of the •conditional-clause• is that of the •serial­
clause• of the •then-clause•; otherwise, it is that of the 
•else-clause•. For example, the •clause• 

c ( x ~ 0 I x I -x ) c 
has as its value the absolute value of cxc. 

4.2 Simple extensions of the conditional clause 

A •conditional-clause• like 
nif a then t else if c then d else 
--if e-then f-else-g fi-fi fi~---

may occur frequently in-programming-situations. 
an e xtension [R.9.4.b] is available whereby the 
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may also be written 
e!f a !h~n b ~!§f c !hen d ~!§f e !h~~ f ~ls~ g fie 

The essence of this extension is that oelse !.fo may be written 
c~!§.fe, if the corresponding o!!o is elided: Using the other 
representations, the strict language is 

o( a I b I ( c I d I ( e I f 
which may be written 

g ) ) ) 0 

e( a I b 1: c I d 1: e 1 fIg )o 
in the extended language. This saves the programmer 
of counting o.f!os so that they match the number of 
schematic flow of control for this •clause• is shown 
4.2 in the case where oao possesses the value •false. 

I 

the bot her 
oifcs. A 
in-figure 
and oc e 

r--->----, atrue• r------------->------------1 
I I v 

e( a I b 1: c I d 1: e f g )o 

I 
afalse• L)J 

Fig.4.2 

possesses the value .true•. Note that in this case the 
•condition• ceo is not elaborated. 

A similar extension (R.9.4.b] exists, whereby the symbols 
ctE~Q !fo may be replaced by o!E~!c if the corresponding cfio is 
elided, but this extension may not be so useful. Because of-it, 

c!.f a the! b iE~E c ~12~ d .fie 
has the same meaning as 

cif a then if b then c el§~ d .!! .fjc 
In other representations-we have-that 

c( a 1: b I c 1 d )o 
means the same as 

c(al(b cld))c , 
where the symbol cl :c is used as a representation of the •then­
if-symbol•. It is also a representation of the •else-if-symbol• 
but no confusion can arise. It is worth noting that, provided 
the elaboration of cac and cbo involves no side effects, the 
effect of c( a 1: b 1 c )cis the same as that of c( a ~ng b 1 
c )c, but the former may be faster. 

In the 
contains an 
allows cgls~ 

strict language the •conditional-clause• always 
•else-clause•; however, another extension (R.9.4.a] 
~~iE !!c to te replaced by cf!o, so that the clause 

c!! P !hen gg_!Q 1 ~l§g §~iE .fie 
may be written 

oj! P !h~n gQ_!Q 1 fie 
In the •assignation• ox := ( a > 0 1 sqrt (a)) c therefore, some 
undefined real value will be assigned to cxc, if the value of 
cac is not positive. This occurs because the D§~j£c will be made 
to possess some undefined real value [R.8.2.7.2.a]. 

4.3 Case clauses 

A case clause is 
clause•, intended to 

also 
allow 

an extension of a •conditional­
for efficient imflementation of a 
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certain kind of •conditional-clause• 
fre q uently. The •clause• 
o!! i = 1 !h~~ x ~!§f i = 2 !h~~ Y g}§f i 
may be written 

which 

c~~§g i !B x, y, z 2~! a ~~~~c 
o r in another representation, 

c(i 1 x,y,zl a)c 

may 

rH.9.4.c,dl. rhe flow of contr ol in such a •chuse• is indicate:} 

cease 

r---->----,-----,-----,----------, 
I I I I I 
I •1• •2• •3• I 
I I 
i x, y, 

I 
z 

I 
a 

L-----L-----L-------------l---)--J 
Fig.4. 3 

in fiqure 4.3. Observe that c( i 1 x a )o is not a case clause 
f o r c ase clauses contain at least two •unitary-clauses• between 
the oigo and the oQ~!o. 

If the reader is now confused over the use of certain 
s ymbol s , the difficulties can be cleared nway by observing that 
~ach of the symbols, •if-symbol, then-symbol, else-symbol• and 
•fi-symbol• has more than one representation. The 
r e presentc1tions are [ R. 3. 1.1.a ): 

• if -symbol• c ( if 
•then-symbol• cl !hgn 
•else-symbol• ol g.J§g 

~~§go 

i~o 
2]!D 

•fi-symbol• o) fi g.§~~o 
Thi s means that the case clause given above might be written 

c~~§g i !hgB x, y, z I a !!C 
and, thou~h most humans would find this difficult to read, 
computer should not. 

, 
the 

Be cause ole is a representation of the •else-symbol• and 
o)c a representation of the •fi-symbol•, the case clause o( i 1 
x, y, z 1 ~~!.P )c may be written o( i 1 x, y, z )o, using the 
e xte n sio n fR.9.4.a) already mentioned above. Note then, that in 
the •assiqnation• ox := ( i 1 1.2, 3.4 ) o, some undefined real 
value will be assigned to cxo if oio is not •1• or •2•, but in 
the •assignation• o( i 1 x, y ) := 3.4o, there may be no 
detectable effect [ R. 8. 3. 1. 2. c 1 if the value of oic is not • 1 • 
or •2•. 

There are further extensions of the case clause involving 
•conformity-relations• fR.9.4.e,f,g], but we shall delay 
discussion of these until •conformity-relations• themselves have 
been exp lain ed . 

4.4 Repetitive statements 

Repetitive statements, such as 
cfQ~ i to n gQ sc 

I 
p 
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are in the extender 
syntactic position of 
example of a repetiti • 

It is defined to be t : 
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are not mentioned in the syntax of the language. Such statements 
are in the extended language [R.9.3.a,b) and can stand in the 
syntactic position of •unitary-statements• (R.6.0.1.c). A simple 
example of a repetitive statement is 

cto 10 do randomo 
It is defined to be the equivalent of the •unitary-statement• 

o~~in !~! j := 1 
m: !! j 5 10 !hen random ; j +:= 1 ; 

g~_!Q m !.! 
~ngo 

however, the reader who consults the Report [R.9.3.a] will find 
that the above is a gross simplification and that there are many 
details, such as increments other than •1•, which must also be 
considered. 

A more illustrative example is 
of~I i f!.Q~ a ~1 b !2 c ~Q x[i] := sqrt(i)c 

This is defined to be the equivalent of 
D~~!n !~! j := a, in! k : b, 1= C i 
m: i! ( k > 0 I j S 1 1: k < 0 I j ~ 1 I !!]~ 

then!~! i = j ; x[i] := sqrt (i) ; j +:= k 
g~_!Q m !..! 

en do 
however, this is still not the complete story and may give the 
wrong effect if it is considered to be the equivalent of the 
above repetitive statement in a •serial-clause• in which 
operations have been redeclared. With this remark in mind the 
reader should now examine the extensions,as given in the Report 
[R.9.3.a,b], to notice how all eventualities h:tve been covered. 

and 

There are essentially two repetitive statements. They are: 
o!.Q! i fro~ a ~1 b !2 c ~h!1~ d QQ eo 

Df.Q! i fro~ a ~1 b ~~!1~ d gg eo 
These differ in that the first form contains a ot.Qo and the 
second does not. In both forms Df!Q~ 1c or DQ~ 1c or o~hi!~ 
!!!!~D may be elided (R.9.3.c (the statement of this extension is 
more precise in the Report) ] and if the •identifier• cio does 
not appear in the •unitary-clause• ceo, or the •serial-clause• 
ode, then of.Q! io may be elided. Notice that the control 
•variable• (ojo in the above example) of a repetitive statement 
is hidden from the progra~mer, so that he may make no assignment 
to it. Also notice that the use of ofor io means that oio is, 
for each elaboration of ode and oeo,--in •integral-constant• 
declared within a range which contains both ode and ceo. 
Consequently no assignment may be made to cic. This fact was 
used in the examples given above. 

Before leaving repetitive statements, we should observe 
that the •unitary-clauses• oa, be and occ are elatorated 
collaterally [R.6.2.2.a] and once only, which means, in 
particular, that a change in the step size cbo or in the upper 
bound ceo, after the initial elaboration, will not affect the 
further elaboration of the repetitive statement. 
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4.5 Closed clauses 

Some examples of •closed-clauses• are c(x + y) c, o(((a)))c 
and c.Qg,g_i!! ~~!!! x, y ; read((x, y)) print(x + y) g__!!.Qc. Note 
that either o() c pairs (•packs•) Cl > or DQ~.9i!! g__!!gc pairs 
(•packages•) may be used, but that c (x + y g_!!gc is not a 
•closed-clause• [R.6.3.1.a, 1.2.5.i, 3.0.1.h,i]. A simplifie1 
syntax of the •closed-clause• is 

closed clause : open symbol, serial clause, close symbol ; 
begin symbol, serial clause, eno symbol. 

but the strict syntax of the Report, involving the use of • pack• 
and •package•, should be consulted [R.6.3.1.a]. A simple parse 
of the •closed-clause•, c (x + y) c, is shown in figure 4.5. Since 

closed-clause 
I 

serial-clause-pack 
I 

r---------------+-----------------, 
I I I 

open-syoobol serial-clause close-symbol 
I I I 

_ _.J. __ 

c ( X + y ) c 

Fig.4.5 

the elaboration of a •closed-clause• is that cf its •serial­
clause•, there is little else to be said about •closed-clauses•, 
except perhaps, that a •closed-clause• is a • Frimary• (as is a 
•cond i tional- clause•) and that the •serial-clause• of a • closed­
clause• is a •range• (R.4. 1.1.e] and therefcre Flays a role in 
the identification of •identifiers• [R.4.1,2,3]. The former 
means that, for example, oa * Q~.9i!! b + c ~.!)QC is an acceptable 
•formula•, though most programmers would prefer to write it as 
C3 * ( b + C ) c. 

4.6 Collateral Fhrases 

A •collateral-clause• [R.6.2.1.b,c,d,f] consists of two or 
more •unitary-clauses• (•units• [R.6. 1.1.e]) separated by 
•comma-symbols• and enclosed between a o () o pair (•pack•) . or a 
cQ~Sii!!. ~.!)QD pair (•package•). An example_ of a •co~late~al­
clause• is c( 1.2, 3.4 )c. It may be used 1n the s1tuat1ons 
c[1:2]!:£~1 x1 = ( 1.2, 3.4 )cor c~.QJ!lE1 z = ( 1.2, 3.4 )c. In 
the first situation the value of the •collateral-clause• is a 
row of values, whereas in the second it is a structure. Thus, 
the semantic interpretation of a •collateral-clause• may be 
determined by its context. Notice that o( a )c is not a 
•collateral-clause•, for, otherwise, there would be an ambiguity 
in that c ( a )c is already a •closed-clause•. 

Cl> Strictly speaking, "pack" and "package" are protonotions but 
not paranotions [R.1.1.61, so you will not find them used in the 
semantic text of the Report. 

An A 

A simplified syntax 
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unit list proper : 
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A simplified syntax of the •collateral-clause• is 
collateral clause : 

open symbol, unit list proper, close symbol 
begin symbol, unit list proper, end symbol. 

unit list proper : 
unitary clause, comma symbol, unitary clause ; 
unit list proper, comma symbol, unitary clause. 

53 

but the strict syntax is rather more complicated [R.6.2. 1] since 
it must take care of the two situations hinted at above together 
with the balancing of modes [R.6.1.1.g, 6.2.1.e, 6.4.1.d], an 
interesting topic in itself, which should he postponed. A simple 
parse of a •collateral-clause• is shown in figure 4.6. If a 
•collateral-clause• is used as a •statement•, then it may be 
preceded by a •parallel-symbol•, represented by DE~~c, if 
parallel processing is intended [ R.1 0. 4 ]. 

collateral-clause 
I 

r----------------+-------------------. 
I I I 

open-symbol unit-list-proper close-symbol 
I I I 
I r---~----T------, I 
I I I I I 
1 unit-list-proper 1 1 I 
I I I I I 
I r----t---. I I I 
I I I I I I I 
1 unit 1 unit 1 unit I 

D ( 1.2 
~ 

X 

Fig.4.6 

~ .I. 

y ) D 

The important feature of a •collateral-clause• is that the 
order of elaboration of the •unitary-clauses• of the •unit-list­
proper• is undefined[R.6.2.2.a]. This means, for example, that 
the value of c(!!!!: i := 0, j := 0, k:= 0 ; ( i := j+1, j ::: k+1, 
k := i+1 }}c could be that of any one of several rows of three 
inteqral values, such as that of c (1, 1, 1} cor c (2, 1, 3) c, 
etc • 

In like manner, a •collateral-declaration• consists of two 
or more •unitary-declarations• separated by ·c~mma-symbols•, 
with the order of elatoration undefined. This means, for 
example, that the •collateral-declaration• oint n := 10, 
[1:n]~~~1 x1c may, or may not, have the effect perhaps intended 
by the programmer. The object c.!!!! n := 10 ; [1:n]!~~1 xlc would 
make more sense. Observe that a •collateral-declaration• is not 
enclosed by an •open-symbol, close-symbol• pair or •begin­
symbol, end-symbol• pair, i.e., neither a •pack• nor a 
•package•. 
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4.7 Serial clauses 

•Serial-clauses• are put together frcm •unitary-clauses• 
with the aid of •go-on-symbols, labels, completion-symbols• and 
•declarations• [ R. 6.1. 11. We shall examine this construction by 
starting from the simplest constituents. It is expedient, as in 
the Report fR.6.1.1.e], to speak of a •unitary-clause• as a 
•unit•. For the convenience of our explanation, we introduce the 
notion •par-aunit• (not in the Report), for a •unit• which may be 
preceded by zero or more •labels•. Thus 

ex := 3c 
is a •unit•, but for us, 

ex .- 3c 
and 

cl2: x := 3c 
are both •paraunits•. The simplified syntax is then: 

unit : unitar-y clause. 
paraunit : unit ; label, paraunit. 
label : label identifier, label symbol. 

and although this is a slight deviation from the strict syntax 
of the Report, we shall have no essential difference when we are 
through. 

A •clause- train• [R.6.1.1.h] 
separated by •go-on-syrohols•. 
examples of •clause-trains•: 

is 
The 

one or- more •paraunits• 
following ar-e ther-efore 

ex := 3c 
cl2: x : = 3c 

cl1 : y := 2 ; x := 
copen (myfile,"abc", tapeS) ; restart 

fR.10.5.1.2.b, 10.5.2.2.b]. We may now 
syntactic rule, viz., 

clause tr-ain : paraunit ; 

3c 
: get(myfile,name)c 
add another simplified 

clause train, go on symbol, paraunit. 
(cf., [R.6.1.1.h]). The semantics of a •clause-train• is simple. 
The elaboration of the •units• proceeds from left to right, 
i.e., in the normal sequential or-der, as in most programming 
languages. 

A •suite-of-clause-trains• [R.6.1. 1.f,g] consists of one or 
more •clause-trains• separated hy •completers•, where a 
•completer• is a •completion-symbol•, r-epr-esented by c. c, 
followed by a •label•. The following are ther-efore examples of a 
•suite-of-clause-trains•: 

c x : = 3c 
ell: y := 2 ; x := 3c 

c( i > 0 1 11 I X:= 1). 11: y := 2; x := 3c 
A simplified syntax of a •suite-of-clause-trains• is 

suite of clause tr-ains : clause train ; 
suite of clause trains, completer, clause train. 

completer : completion symbol, label. 
[R.6.1.1.f,g). The semantics of a •suite-of-clause-tr-ains• is 
dr-amatically different. The effect of the •completer-•, as 
opposed to the •go-on-symbol•, is to force the completion of the 
elaboration of the •serial-clause• containing it and to yield, 
as the value of that •serial-clause•, the value of the •unit• 
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most recently elaborated. In the last example above, if the 
value of cic is •-1•, then the value of the •serial-clause• is 
the value of ox := 1c and the •clause-train• cy := 2 ; x := 3c 
is not elaborated; otherwise, it is the value of ex .- 3o. In 
fact, the effect is the same as that of c ( i > 0 1 y := 2 ; x := 
3 1 x := 1 )c. One might think that any •suite-of-clause-trains• 
may be re-written as a •conditional-clause• (suggesting 
redundancy in the language) and though this may be true in 
theory, the example 
CfQ! k !Q y~ s gQ ( c = s(k] I i := k ; 1 ) ; !~!§~ . 1: truec 
(R.10.5.1.2.n], shows that the •completer• is indeed a useful 
tool in practical programming. It plays a similar role to that 
of the return statement in PL/I or FORTRAN, though in these 
languages the return statement applies only to procedures 
(subroutines, functions). 

A •serial-clause• (R.6.1.1.a] is, roughly speaking, a 
•suite-of-clause-trains• preceded by zero or more •declarations• 
and;or •statements• but these •statements• may not be labelled. 
Examples of •serial-clauses• are 

ex : = 3c 
cl1: y := 2 x := 3c 

c( r > .5 1 11 1 x := 1) • 11: y := 2; x := 3c 
cfea! x, y ( r > • 5 1 11 1 x : = 1 ) • 11: y : = 2 ; x : = 3c 

cr := random !~~! x, y ; 
( r < .5 1 11 1 x := 1) • 11: y := 2 x .- 3c 

and 
cr~~! r r .- random ; real x, y 

( r < • 5 1 11 1 x : = 1 ) • 11 : --y-: = 2 x : = 3 c 
A simplified syntax of •serial-clause• is: 

serial clause : suite of clause trains ; 
declaration prelude sequence, suite of clause trains. 

declaration prelude sequence : declaration prelude 
declaration prelude sequence, go on symbol, 
declaration prelude. ~ 

declaration prelude : single declaration, go on symbol 
statement prelude, single declaration, go on symbol. 

single declaration : 
unitary declaration ; collateral declaration. 

statement prelude : unit, go on symbol ; 
statement prelude, unit, go on symbol. 

The rules just given are close to those in the Report 
[R.6.1.1.a,b,c,d]. The reader should now examine the rules of 
the Report to observe how the metanotions •MODE• and •SORT• have 
been carried through the syntax and that balancing of modes may 
be necessary when •completers• are present (R.6.1.1.g]. 

The elaboration of a •serial-clause• begins with the 
protection [R.6.0.2.d] of all •identifiers• and •indications• 
declared within it. The protection is done to ensure that, for 
example, all •identifiers• declared within a •serial-clause•, 
cannot be confused with similar •identifiers• outside it. Users 
of ALGOL 60 or PL/I will recognize this as the matter of scope, 
but the reader is warned that the word "scope" has a wider 
meaning in ALGOL 68 [R.2.2.4.2]. 
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4.8 Program example 

The •procedure-denotation• which follows possesses a 
routine which expects a row of integral values which are the 
coefficients of the polynomial 

ca[O)*x**n+a(11*x**(n-1)+ ••• +a(n]r 
It then finds all the rational linear factors (those of the form 
p*x-g, where p and q are integral). It delivers an integral 
result, which is the de g ree of the residual polynomial, whose 
coefficients remain in cac. The number of linear factors is in 
ere, any constant factor i s in ccc and the factors cu[ i ]*x-v[i ]c 
are found in the row of integral values cue and eve C1>. 

D£!2£ factors= (~~f[O:l!n~ a ¢the coefficients of the given 
polynomial¢, ref int r ¢for the number of rational linear 
factors¢, c itor the constant factor¢, r,gf[ J!.n! u, v ¢for 
th e linear factors (u( i ]*x-v[i ]) , 1~i~r!l'!) int : 

~!~!~ in! n := ~E~ a tthe degree of the give~-polyno m ial¢; 
r := 0; c := 1; ¢initialization!!'! 
~.hi!! a[n] = 0 Q2 rtremove the common power of x¢ 

~!~i!! u[r +:= 1] := 1 ; v(r] := 0 ; n -:= 1 gng 
!2~ P !2 ab~ a[O] Q2 

if a[O] +: p = 0 
!.hgn tp divides a[O]¢ 
i~! q := 0 ; !.h!!! (q := A~~ q + 1) ~ !t~ a[n) Q2 

if a[n) +: q = 0 
!.h!!! ¢q divides a(n]¢ 
!!!! f, g ¢for temporary storage laterrt ; 

if q I 1 !!!Q p = 1 
then ¢look for a constant factor¢ 
MORE : !2£ j !!2! o 12 lm g2 n-1 

!.! a[j) ~= q 1 0 ~ 
!hen ¢q does not divide a( j]¢ 
g2_!2 NOCONSTANT f! ; 

¢remove the constant factor q¢ 
fQI j !I2~ o !2 n QQ a(j] +:= q ; c •:= q ; 
¢q may be a multiple factor so¢ ~Q_!2 MORE 
f! tend th e search for a constant factor¢ ; 

NOCONSTANT : ¢try (p*x-q) as a linear factor¢ 
g : = 1 ; f . - a( 0 1 !l'!tr y x = q I p ¢ 

!2~ i !2 n Q2 f . - f * q + a[ i) * (g *: = F) 
if f = 0 
!.hgn ¢ (p*x- g) is a factor¢ 
uf r +: = 1 ] : = p ; vr r ] : = q n - : = 1 ; 
I2I i fi2~ 0 !2 n Q2 ¢compute tha residual¢ 

~gg!..!! I!! i~! ai = a[i] ; 
ai : = f : = (a i + f * q) + p end 

( n = 0 I REDUCED I NOCONSTANT_)_ 
~.!~g ¢if we are here, then (p*x-q) is net a factor 
so try (p*x+ q) ¢ ( (q : = - q) < 0 I NOCONSTAM T ) 

c 1} This procedure is derived from algorithm number 75 in the 
Communications of the As soc. for Computing Machinery, Vol 
5 (1962) 48 , r evised by J.S.Hillmore Vol 5 (1962) 392 and further 
revised for th e v e rsion given above. 
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4.1 Conditional cla 

a) What is the value of 
b) Is c.!_f X ( 0 !!!~!! gg 
C) Is c ( X ) 0 I a I b 
d) Is c a 2f ( X > 0 I l 
e) Is c ( r I m I n ) < 
f) Is c .!_f X > 0 !!!~!! X 

4.2 Simple ex ten sic 

a) What is the value of 
b) What is the value o1 
c) What is the value oJ 
d) Simplify the foll o w: 

c i f p t hen a else : .t!-.fie:---- -- -- . 
e ) Re move the extensioJ 

4. 3 Cas e c lauses 

a) Is c ( 1 I 2 1 3 ) c 
b) What ar e all the re1 
c) What i s the val ue o : 
d) What is th e value o : 
e) Is c ( 2 1 a, b, c) ! 

4.4 Repetitive sta 
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f! tend else part¢ 
fi tend iteration on q¢ 

f! tend iteration on p¢ ; 
REDUCED: (n = 0 I c *:= a[O]; a(O] := 1); 
¢the degree of the residual polynomial is¢ n 
g!!£D 
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In the range of the •declaration• o[0:3J!.!!! a1 := ([ ]i..!!!.: 
(1, -1, 2, -2))[aO), .!!!! k, number, constant, [ 1:3J.!!!!. rn1, n1o, 

a •call• of the above •procedure• might be 
ek := factors(a1,number,constant,m1,n1)e , 

whereupon we should have ak = 2, a1 = ([]!.!!!. :(1, 0, 2, O))[(i)O], 
number = 1, constant = 1, m 1 = ( 1) , n 1 = ( 1) c, corresponding to 
the factoring 

ex**3 - x**2 + 2*x - 2 = (x**2 + 2) (x - 1) a 
Observe that in the •clause• oEggi!! E~K i.!!!. ai = a[i] ai .- f 
• - (ai + f * q) + p ~.!!Qe, the programmer may optimize his 
subscript calculation, rather than leave this delicate matter to 
the whim of the compiler writer. On a non-optimizing compiler, 
of which there may be many, this possibility has clear 
dividends. Note also the •assignation• ef := f * q + a(i] * (g 
*:= p)e, which replaces two statements in the original ALGOL 60 
version. 

Review questions 

4.1 Conditional clauses 

a) What is the value of a ( 0 < 0 1 1 i 2 1 3 )e? 
b) Is eif x < 0 !.!!~~ gQ_i2 errore a •conditional-clause•? 
c) Is e( x > 0 1 a 1 b) 2! co a •selection•? 
d) Is ea 2f ( x > 0 1 b 1 c ) c a •selection•? 
e) Is c ( r 1 m 1 n ) < ( s 1 i 1 j ) c a •formul a•? 
f) Is eH. x > 0 !.!!~~ x g.J:~g y .!i := 3.14e an •assignation•? 

4.2 Simple extensions of conditional clauses 

a) What is the value of D ( 1 < 2 I : 3 < 4 5 I 6 ) e? 
b) What is the value of e ( 1 ) 2 I : 3 < 4 5 I 6 ) []? 
c) What is the value of [] ( !.E!!g I 5 I 4 ) + ( !~!.§~ I 3 I 6 ) o? 
d) Simplify the following using the extensicns: 

eif p !.h_g.!! a ~!.§~ !f q thg!! if r _!hen b _g!§_g c f! ~!~.§ ~~i.E 
!!-f:!_e. 

e) Remove the extensions in e ( a I : b I c I : il I e ) IJ. 

4. 3 Case clauses 

a) Is e( 1 1 2 1 3 )e a case clause? 
b) What are all the representations of the •if-symbol•? 
c) What is the value of e ( 2 1 3, 4, 5 1 6 )e? 

the d) What is the value of c( 0 I 3, 2, 1 I 2 )c? 
Vol e) Is c ( 2 1 a, b, c) Qf de a •selec tion•? 

1rther 
4.4 Repetitive statements 
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In each of the following, is the object a repetitive 
statement, and if so, how many times is the •unitary-clause• ceo 
elaborated? 
a) DfQ!: i Q2 e ~E!!~ { i < 9 )c 
b) ofQ!: i !2 10 Q! 2 QQ ec 
c) ado eo 
d) o~~!1~ !~1~~ do eo 
e) c!Q 0 do eo 

Comment on the scopes of oic in the following: 
f) ofQ!: i f£2~ QY 1 !2 10 Q2 i := 2 * i + 1o 
g) o!!!! i : = 5 ; !Q! i f£2.!!! 1 Q1 i !Q i - : = 1 Q2 a[ i] : = i * i c. 

4.5 Closed clauses 

a) Is o { x / y ) o a •closed-clause•? 
b) Is o (p 1 1 ) c a •closed- clause•? 
c) Is o { x := 1 ; y := 2 ; z ) := .lc an •assignation•? 
d) Is oif x := y ; z := 2 fie a •closed-clause•? 
e) Is c~~g_i_.!} x := 1 y :=-2 )o a •closed-clause•? 
f) Is o{ a ; b , c) o a •closed-clause•? 

4.6 Collateral phrases 

a) Is o{x)o a •collateral-clause•? 
b) Is o {1 ; 2 , 3 ) o a •collateral-clause•? 
c) Is c {1 1 2 , 3 ) o a •collateral-clause•? 
d) What is the value of o{"a", "b", "c") + ("d", "e")o? 
e) Is it possible that the value of 

o(i!!! i := 2, j := 3; (i +:= j, j +:= i))o 
might be the same as that of c(7,5)c? 

4.7 Serial clauses 

a) Is oxo a •serial-clause•? 
b) Is o ( p 1 x 1 1 ) • 1: ho a •serial-clause•? 
c) Is o3.eo a •serial-clause•? 
d) Is a(x := 1; y := 2)c a •clause-train•? 
e) Rewrite the following •conditional-clause• as a •serial­

clause• containing a •completer•. 
c ( x Q!: y 1 n : = 1 ; r 1 n : = 2 ; s ) o 

4.8 Program example 

a} How many occurrences of a •conditional-clause• are there in 
this •particular-program•? 

b) What is the mode of oaa? 
c) What is the mode of oaio? 
d) How many occurrences of a •closed-clause• are there following 

the •label• oNOCONSTANT :c? 
e) How many occurrences of a •collateral-clause• are there? 

An J. 
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5 Routine denotations and calls 

5.1 The parameter mechanism 

We begin this chapter with a simple illustrative examfle of 
the •declaration• and use of a nonsense •procedure• oupc which 
has two •parameters• oao and abo, and whose effect is to 
increment the •real-variable• oac bj the •real-constant• obo. In 
ALGOL 68 the defining occurrence of such a •procedure• is in the 
•identity-declaration• 

DE£Qf up= (£~f £~~!a, £~~! b) : a +:= be 
and its •call• might be oup(x, 2)c or oup(x1[i], y)o. In ALGOL 
60, a procedure with similar effect would be declared by 

OE£Qfg.Qy_£g u·p(a, b) ; Y~!g,g b ; E~~l a, b ; a := a + be 
and its procedure call might also be oup(x, 2)c or oup(x1[i], 
y)o. In PL/I the same procedure might be written 

U P : PRO C (A, B) A = A + B ; END ; 
a n d its c a 11 , C A L L UP ( X , 2 E 0 ) or C A L L UP (X 1 (I ) , ( Y ) ) • I n F 0 R T R A N 
it would be 

SUBROUTINE UP(A, B) 
A = A + B 
RETURN 
END 

with call, CALL UP(X, 2.0 ) or CALL UP (X1 (I), Y). 

We have described this frocedure in more than one language 
in order that its intended effect should be clear to all. The 
reader will notice that we are concerned with that which, in 
ALGOL 60 terminology, is known as a "call by name" and a "call 
by value". This has become the accepted way of describing the 
fact that in the •call• cup(x, 2)o, axe is passed by name to oao 
and c2o is passed by value to obc. The manner in which values 
are passed at the time of a •call• is generally known as the 
"pa .rame ter mechanism"· 

we shall not describe here the various parameter mechanisms 
in other languages, except to say that the student is likely to 
find this to be the most confusing and perplexing subject area 
in the study of programming languages. Each language has its own 
philosophy and usage, with treacherous traps for the unwary. We 
hope to show, in this chapter, that the parameter mechanism of 
ALGOL 68 is exceptional in its clarity, encouraging the 
programmer to state precisely the mechanism he wishes to use, 
rather than to rely upon the conventions of a given languag e or 
the whim of an implementer. There are essentially no new ideas 
involved beyond those which we have encountered in earlier 
chapters. A thorough understanding of the •identity-declaration• 
is all that is needed. The reader may soon wish to forgive us 
for spending so much time on the explanation of it in chapter 2. 
The ALGOL 68 parameter mechanism is defined in terms of a 
logical application of the •identity-declaration• to that 
internal object, known as a "routine", which is the value 
possessed by a •routine-denotation•. 
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5.2 Routine denotations 

The ob-ject ~ · 
o((:£~!: !:~~1 a, f~i!! b)/.. : t a +:= tf, o 

is an example of a •routine-denotation• [ R. 5. 4. 1. a] and is 
essPntially what stands on the right of the •equals-symtol• in 
the •declaration• of oupc given in secticn 5.1 above. One may 
notice that the enclosing symbols o(o and o)c have been emitted 
in section 5. 1, but this is only because of an extension 
fR.9.1.d] which allows such omission in this situation. A 
•routine-denotation•, like any other •denotation•, possesses a 
value, a routine, which is an internal object. This internal 
ob-ject is a certain sequence of symbols, easily derive1 
f R.5.4.2] from the •denotation•. For example, the routine 
possessed by ~m~ 

o((f~f I~~1 a, I~i!! b>t:\a +:= b D 

i s 
• (!:~.! I§i!! a = ~.!s!E• I~i!! b = ~.n.Q ; (a +:= b) l • 

and it is important to notic e that it has the shape of a 
•closed-clause•, in which each of the •parameters• cac and obo 
forms part of an •identity-declaration•. 

As we have seen in section 2.5, an •identity-declaration• 
causes the value of its •actual-parameter• (the part to the 
right of the •equals-symbol•) to be possesse d ty the 
•identifier• of its •formal-parameter• (the •identifier• to the 
left of the •equals-symbol•). This means that in the •identity-
declara tion• ~a. 

D.Q.£.2~ u F = ((I~!: !:~!!! a I f~~! b)r ~ + := b 0 
the •identifier• aupc is made to possess the routine 

•(!:§! !:~!!:!:a= ~.!s!£, I§!!.! b = ~.!s!.E ; ( a+:= b) • . 
Figure 5.2 shows a simple parse of this •identity-declaration•. 
The •routine-denotation• is shown at 1 and the routine which it 
possesses at 2. After the elaboration of the •identity­
declaration•, the •identifier• oupo, possesses the same routine 

declaration 
I 

r----------T--------i-----------------, 
I I I 

formal-parameter equals-symbol actual-parameter 
I I I 

----~--- I --------------------------i---------(1) 
o.QIQf up ( ( !:§! f~i!! a , !:~2! b >( : .(a +:= bJ ) o 

T- --------------T---------------------
(.3) : (2) 

: r---------------------i--------------------------, 
: I• ( Eg!: .!:~~! a = ~!i£, _!:g~! b = ~!i.E ; ~a +: = b) ) • I 
: L------------------------------------------------J 

r----i-------------------------------------------, 
I• ( !:~f .!:~~! a = ~!!£, I~!!! b = ~!s.iE ; \_a +:= b) l •I 
L------------------------------------------------J 

Fig.5.2 
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(see fiqu~e at 3). The elabo~ation of the •call• oup(x, 2)c is 
now easy to desc~ibe. Its effect is to replace the two 02~!Eos, 
in a copy of the ~outine, by oxc and o2c ~espectively a nd then 
to elabo~ate the resulting exte~nal objec~ 

c (£~.! fg~1 a = x, E~~1 b = 2 ;1 a +: = ~ c 
as if it were a •closed-clause• standing in the pla c e of the 
•call• cup (x, 2) o. 

It is pe~haps now clea~ why the left part of an •identity­
decla~ation• is known as its •formal-pa~amete~· and the ~ight 
part as its •actual-paramete~•, for these are precisely the 
roles which they play in the paramete~ mechanism. Not only does 
the •identity-decla~ation• play a central role in such a 
mechanism, but its power, which the implementer of any language 
must of necessity provide, is placed in the hands of the 
p~og~amme~ to use as he sees fit. Thus, of~! f~~1 x1i = x1[i]c 
miqht usefully be used to optimize add~ess calculation while 
working with the vector cxlc. An example might be 

ox1i := 3 * x1i + 2 * x1i ** 2c 
rather than 

cx1[i] := 3 * x1[i] + 2 * xl[i] ** 2o 

5.3 More on parameters 

It is perhaps worth dwelling on the name-value ~elationship 
created by the paramete~ mechanism for the example in section 
5.1. The •closed-clause• which is elaborated as a result of the 
•call• oup(x, 2)c is 

c(£~! E~~1 a= x, f~al b = 2 ; a+:= b)c 
and the elaboration of the •collateral-decla~ation• which 
follows its •open-symbol• results in the relationships depicted 

0 0 

o o(1)o o 
0 0 

L-)T(-.J 

r-~--, 
I I 
L-------' 

Fig.S.J.a 

fg~1 b = 2o 

( 2) 
r-----'--, 
I • 2• I 
L-------' 

~----, 

I •2 • I 
'------' 

in figure 5.3.a. During the elaboration of the •call• cup(x, 
2) c, cao possesses the same name as that possessed by nxo (see 
figure 5.3.a at 1), and cbo possesses the same value as that 
possessed by o2o (see the figure at 2). This means that the 
•formula• ca +:= be has the same effect as if it were written ox 
+:= 2o. Both can and oxc have a mode which begins with 
•reference-to•, a requirement of the left •operand• of the 
•operator• c+:=c (R.10.2.11.e]. Note also that if the •call• 
were oup(x, y)o, then the •closed-clause• would contain the 
•declaration• c_!;g~1 b = yo and this would involve a 
dereferencing of eye, depicted in figu~e 5.3.b at 1. Observe, in 
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this figure, that aye , considered as an •identifier•, possesses 
a name of mode •reference-to-real• (see 2) but considered as an 
•actual-parameter•, it possesses a value of mode •real• (see J). 
The coercion occurs at 1. We may say, in general, that if a 
•parameter• cac is considered as a •variable• referring to a 
value of mode specified by O!a, e.g., if an assignment is to be 
made to aao, then the •formal-parameter• should be crgt ! ao, 

identity-declaration 
I 

r------------------T~------------------~ 
I I I 

formal-real-parameter equals-symbol actual-real-parameter 
I I I 

r----L-------, I strong-real-base 
I I I I 

formal-real- real-mode- I (coercion) ( 1) 
declarer identifier 1 I 

I I I reference-te-
l I I (3): real-base 

~ 

b 

r--~---, 

1•3.14•1 
l_. _____ J 

~ 

yo 

r---L--, o 
1 •3. 14•1--<--o o (2) 

0 

Fig.5.1.b 

but if obc is u~ed only as a •constant• of mode o!c, then the 
•formal-parameter• may be C! be. 

5 .4 The syntax of routine-denotations 

A •routine-denotation• consists of a •formal-parameters­
pack• followed by a •cast•, both together enclosed between the 
symbols o (a and c) c. Thus in 

c( (£~! £g~1 a, £~~.! b) : a +:-= b) o 
the object o(£~.! !:g~.! a, !:§al b)c is the •formal-parameters­
pack• and o: a +:= be is the •cast•. A simplified syntax of a 
•routine-denotation• is 

routine denotation : 
open symbol, formal parameters pack, cast, close symbol. 

formal parameters pack : 
open symbol, formal parameter list, close symbol. 

formal parameter list : formal parameter ; 
formal parameter list, gamma, formal parameter. 

qomma : qo on symbol, comma symbol. 
but the strict syntax (R.5.4.1] contains metanotions which 
ensure that the number and the modes of •parameters• in •calls• 
match those in the •routine-denotation•. Figure 5. 4 shows a 
simple parse of a •routine-denotation•. We have already alluded, 
in section 3.7, to the fact that •actual-parameters• in a •call• 
may be separated by either a •go-on-symbol• or by a •comma­
symbol•. Now that we have seen that the elaboration of a •call• 
amounts to the elaboration of a •closed-clause• in which the 
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•formal-parameters• of the •routine-denotation• become 
transformed into •identity-declarations•, it is at once apparent 
that a •comma-symbol• separating •formal-parameters• becomes a 
•comma-symbol• of a •collateral-declaration•. This means that 
the •parameters• are elaborated collaterally. The •go-on­
symbol•, on the other hand, would result in •declarations• which 
are elaborated serially. To take a specific example, the 

routine-denotation 
I 

r----------------------r--~---------------~------1 
I I 

open- formal-parameters-pack cast 
symbol I I 

I I I 
I r--------------~------------, I 
I I I I I 
I open- formal-parameter- close- I 
I symbol list symbol I 
I I I I I 
I I r-------rL--------, I I 
I I I I I I I 
I I formal- gamma formal- I I 
I I parameter I parameter I I 
I I I I I I I 

.J.. .J.. ----~----- .L. 
___ .J..__ 

.L. ----~----
D( !:~.! f~,g.! a !~g.! b 

Fig.5.4 

•formal-parameters-pack• 
o(,!nt n, [ 1:n]f~2.! u)o 

may be transformed into 

: 'i 

o!Q! n = 10, [ 1:n)f~~.! u = x1 ;c 
but the •formal-parameters-pack• 

o<!n! n ; [ 1:n)f~2.! u)c 
may be transformed into 

+ := b 

I 
close-
symbol 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

.L. 

) 0 

c,!Q! n = 1 0 ; ( 1: n ]fg,g.! u = x 1 ; o , 
which is more useful since its elaboration is well defined. The 
particular choice of the •gomma• which separates •form'il­
parameters• is therefore of significance but that which 
separates the •actual-parameters• of a •call• has no semanti= 
significance. 

The semantics of a •routine-denotation• [R.5.4.2] tells us 
how the routine which it possesses is obtained. The essential 
points are, that an •equals-symbol• followed by a •skip-symbol• 
is inserted after each •formal-parameter•, that the •open­
symbol• which begins the •formal-parameters-pack• is deleted and 
that its •close-symbol• is changed into a •go-on-symbol•. The 
more precise statement in the Report [R.5.4.2] should be 
studied. 

.A further example of a •routine-denotation• is 
o ( (!:~21 x) ~~,g.! : random * x) c 

where the second occurrence of D!:~2.!o (part of the •cast•) 
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indicates that the routine is to deliver a value of mode •real•. 
The example in section 5.1 delivers no value and therefore uses 
a •void-cast• (whose •virtual-declarer• is empty). Note that 

n£~21 : random * lOOn 
is not a •routine-denotation• despite the fact that it may 
appear in the •declaration• 

D£f2f £~21 r100 = !!~! : random * 100c 
however, the coercion known as "proceduring" (R.8.2.3.1.a] 
enables the identifier nr100n to possess the routine 

• (£~~! : f!~!: random r * 100)• 
Actually, it is only necessary to write 

D£fQf !~21 r100 = random * 100o 
and then the routine possessed by or100n will be 

•(!~~1: random* 100) • 

5.5 What happened to the old call by name? 

In explaining the parameter mechanism of ALGOL 60, it is 
customdry to consider an examfle something like 

DE~Qf!Qgf~ upa{a, b) ; y~!]~ b; ~~~!a, b 
h!g!g i : = i + 1 ; a : = a + b !!!go 

and to explain that, in the scope of the fragments D£~~1 ~!!~1 
x1 [ 1:10]; !!!i!9~! i ; i := 1o, the procedure call oupa(x1[i], 
2)o will, to the astonish~ent of most, increment the value of 
ox1[2]o rather than that of ox1[ 1 ]n. This is a result of the 
semantic description of procedure calls in ALGOL 60 [N.4.7.3.2] 
involving what is usually referred to as the "copy rule". In 
ALGOL 68 a routine which achieves a similar effect, for simple 
•variables• (not •slices•) passed to nan, is 

n£rOf upa = (f~E £~21 a,!!~! b) (i +:= 1 ; a +:= b)o 
but the •call• oupa(x1(i], 2)cin the range of o(1:10]£!~! xl; 
i!!! i := 1o, will increment the value referred to hy ox1(1 ]o and 
not ox1f2 ]o. rhus the passing of the •parameter• ox1(i ]o by 
name, as it was known in ALGOL 60, is not achieved, in ALGOL 68, 
by using the •formal-parameter• nref f!~! ao. The resulting 
•identity-declaration• o~!! ~!~! a = x1(i ]o is elaborated at the 
time of entry to the routine and the old copy rule of ALGOL 60 
does not apply. 

In the case of expressicns and subscripted variables, this 
copy rule of ALGOL 60 amounted to the passing of a procedure 
body to the formal parameter and was used by a generation of 
instructors to impress students with the idea that ALGOL 60 is a 
nice lanquaqe in which nice things can be dcne in a nice way. 
However, the niceties of it were often too subtle for the 
beginner, who thus fell into the trap of using a powerful device 
when it was not necessary for him to do so. We may now perhaps 
look back upon it as a design imperfection in ALGOL 60. There 
should have been a <name part> rather than a <value part> 
f N.5.4.1 ]. A language should be such that the least effort by 
the programmer calls up the simplest implementation schemes. If 
he wishes to use a more powerful scheme, then he should be made 
aware of it by the necessity for writing a little more in his 
source program. 

To recapture the strange effect of the call by name of 

ALGOL 60, the example 
O£~Q£ upb = (Eroc re 

for then the tirst­
oupb(x1fi], 2)o is o 
elaboration of ox1[i]o 
[ R. 8 .2.2] of oac in 0 
transfer. Thus nx1(2]c 
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5.6 Program example 

. The following a 
d1rected graph ego <t> 
graph are represented 
r?w-of-bits ego. A set 
blts structure, the j­
which is •true. if tha 

The set of nodes 
The edges in a fami 
like ogo, is of mode • 
set obn of nodes ne 
contains only node •1• 
recursive routine ogro 
each node •i• in ob 
from oso to node •i•. 
removed from ego. The 
The procedure cgrowo 
of th~ saplings augmen 
by ne1ghbours of node 

Since the standan 
be larger than the 
mask out the redundant 

If the number of 
•mode-declaration• for 
accordingly. If suffif 
rna Y use the mode •row-e 
the operations involvec 

As an example, foJ 
th 1(2,3,4), 

e algorithm generate! 

1 () , 
1 () , 

2 ( 1) , 
2 ( 1) , 

3 ( 1,; 
3 ( 4) 1 

c 1 > T 1 rans ated from Al< 
Assoc. Computing Machir 



•rea 1•. 
e uses 

that 

t it rna Y 

2.J.1.a] 

60, it is 

~al ~H~1 
Gpa (x 1( i ], 

value of 
ult of the 
N.ll.7.3.2] 
rule". In 

or simple 

b)o 
].£~~1 X 1 ; 

, x1[1]o in:l 
, x1(i ]o by 

ALGOL 68, 
resulting 

ted at the 
ALGOL 60 

bles, this 
procedure 

neration of 
60 is a 

nice way. 
le for the 

rful device 
ow perhaps 
L 60. There 
alue part> 
t effort by 

If 

in 

1 by name of 

An ALGOL 68 Companion 65 

ALGOL 60, the example mentioned above should appear as 
D£!Q~ upb = (E!Q~ !~! £~~1 a, !~~1 b) (i +:= 1; a+:= b)o, 

for then the first •declaration• arising from the •call• 
cupb (x1fi ], 2) c is D££Q~ .£~! !~~1 a = x1[i ]c. In this case the 
elaboration of cx1[i]c occurs at the time of the deproceduring 
[ R.8. 2. 2] of can in ca +:= bo, and not at the time of parameter 
transfer. Thus ox1[2]c is incremented and not ox1[1]o. 

The occurrence of ox1[i]o in D£!Q~ tQ! tQ~! a= x1[i ]o is 
another example of a •procedured-coercend• for ox1[i]o is not a 
•routine-denotation•. Nevertheless, the •identifier• nan is made 
to possess the routine • (£~! !~~! : x1[i])• by a coercion known 
as procedurinq rR.8.2.3]. 

5.6 Program example 

The followin g algorithm finds all trees which span a non­
directed graph ago <1>. The edges radiating from node •i• in the 
graph are represented by bits in the i-th bits structure of the 
row - of-bits ogo. ~ set of nodes is also represented by bits of a 
bits structure, the j-th node being represented by the j-th bit, 
which is atruea if that node is present. 

The set of nodes in the growing trees (saplings) is oso. 
The edges in a family of saplings are recorded in nan, which, 
like ago, is of mode •row-of-bits•. The boundary of esc is the 
set nbc of nodes neiqhbouring the nodes cf oso. Initially esc 
contains only node •1• and abo its neighbours, i.e., og[1 ]o. The 
recursive routine ogrowc iterates over the nodes in obo. For 
each node aia in abo it finds all possible edges (new growth) 
from oso to node aia. This new growth is recorded in oao and 
removed from ego. The node •i• is removed from the boundary nbc. 
The procedure cgrowo is then called recursively with the nodes 
of the saplings augmented by node •i• and the boundary augmentei 
by neighbours of node aia. 

Since the standard ntits widthc (or olcng bits widthc) may 
be larger than the number of nodes, a omasko is necessary to 
mask out the redundant bits when testing bit patterns. 

If the number of nodes exceeds obits widtho, then the 
•mode-declaration• for c]o, in the first line, should be changei 
accordingly. If sufficient precision is then not availatle, one 
may use the mode •row-of-toolean•, with suitable declaration of 
the operations involved. 

As an example, for the graph 
1(2,3,4), 2(1,3), 3(1,2,4), 4(1,3) 

the algorithm generates eight trees in four families 

1 () , 
1 () , 

2 ( 1) , 
2 ( 1) , 

3(1,2), 
3 ( 4) , 

4 ( 1, 3) 
4 ( 1) 

(4 trees) 
(1 tree) 

<1> Translated from Algorithm 354 by M.Douglas Mcilroy. 
Assoc. Computing Machinery, Vol 12(1969) p. 511. 

Comm. 
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1 () , 
1 () , 

2 (3) , 
2 (3) , 
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3 ( 1) , 
3 ( 4) , 

4 ( 1, 3) 
4 ( 1) 

(2 trees) 
(1 tree) 

ot~g!Q ~QQ~ ~ = Qi~§ ¢or 12B9 ti~§, if necessary¢ ; 
E!:.Qf trees = ([ 1:) t g ¢the given graph¢, 

E!:Qf ([ ]Q) f ¢the action for each family¢) 
t~g!g !Q~ n = ~EQ g ¢the number of nodes in the graph¢; 
r 1:n lt a ¢the growing family, saplin gs¢; 
b t; Q flips = t Q!: ~ t ¢all flips¢ ; 
t unit= -.(flip:; ~E - 1) ¢a flip followed by flops¢, 

mask = ~(flips !!E -n) ¢for masking redundant bits¢; 
E!:Qf grow = (!:~![ 1 :n 1~ g ¢the residual graph¢, 

b s ¢the nodes of the saplings¢, 
~~! Q b rtcoundary of the s aplings¢) 

!! s ~ mask 
~~~Q ¢the family is compl ete, so¢ f(a) 
~J:§g for i to n do 

if i-elem-h --
then ¢examine each node of the boundary¢ 
~-~~iti = unit Y£(1-i) rtonly the i-th bit is flip¢; 
b := t and -. uniti ¢remove node i from the boundary¢ 
afil :=-g(i] i!QQ s rtthis is the new growth¢; 
q[ i 1 : = q( i] i!.!!Q ~ s ¢remove the new growth¢; 
qrow (JQ.f [ 1: n ]Q := g ¢pass a copy of the residue¢, 

s or uniti ¢th e family now includes node i¢, 
12~-Q := b 2!: gfi] ¢the bounjary is au gmented by 
the neighbours of ncde i¢ ) 

( -. g[ i] ~ mask 1 ¢we cannot move¢ out ) 
!.i ; 

out : §..lsi.E 
fi . 

C n- ~ • 1 1 a[ 1 J : = --. flips ) ; 
grow(J:Qf [l:n]Q := q ¢s tart with a copy ¢ , 

unit ¢start with node 1¢, 
12f ~ .- g( 1] ¢the neighbours of node 1¢) 

In the above, the procedure oqrowo has two •calls•. rhe 
• call• pre ceding the final oendc, which starts the whol e 
process, an d another recursive--•call• within the •routine­
denotation•. In both of these •calls•, notice that the first a nd 
third •parameters• must be •variables•. Moreover, new copies of 
these •variables• must be passed. A convenient way to do this is 
to use •local-generators•. The second •farameter• is a 
•constant•, a nd no assignment is made to it. 

Review questions 

5.1 The parameter mechanism 

a) Is the following an •identity-declaration•? 
D£~~1 E!:2f P = (E~i!l a) !:~~1 : a * ao 

b ) Is the following 
D 

c ) Giv e a • declar:.ti 
• pa ra meters• an 
a nd •2•. 

d ) Gi ve a • declarati ' 
pa r ameters • whic 

e) Give a •declarati, 
•real-variable• , 

5.2 Routine deno 

a) Is of~! !:£~1 xy = 
b) Wha t is the • formi 
c) If c po possesses 

a * b ) •, wha · 
cp(x+l, y)o? 

d) What is the value 
!:~~! : a * a) c? 

e) What is the valut 
!:~!f 1 : n 1!:~~1 a 1) 

5.3 More on para1 

In the reach of ' 
of op (x, y) c 
a) in the reach cf o 
b) in the reach of · 

DE!:Qf p = (real < 

c) in the reach-of-
0.I?!:2f p = (I.~! !:l 

d) in the reach of a 
:= be? 

e) in the reach of ~ 

5. 4 syntax of rot 

a) Translate the foL 
O££.Q.f~.9:!!fl 

5.6 Program exam : 

a) Is cunito a •consi 
b) W by is a orefo no i 
c) Why is an ;actual· 

•call•? 
d) W by was oto not i1 
e) If on o is •3• a1 

omasko? 
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b) Is the following an •identity-declaration•? 
D£!Q~(I~~1 a)f~~1 p = a • ao? 

c) Gi ve a •declar:t.tion• for a •procedure• or2c which has no 
• para meters• and delivers a random real va lue between .o. 
and • 2•. 

d) Gi ve a •declar:t.tion• for a •procedure• omaxo with t wo • red l­
pa r ameters • which delivers the larger of thE two. 

e) Give a •declaration• of a •procedure • orecipo which accept~ a 
•real-variable• and replaces it by its reciprocal. 

a) 
b) 
c) 

d) 

e) 

of 
a) 
b) 

c) 

d) 

5.2 Routine denotations 

Is o_Ig! I£~1 xy = x * yn an •identity-declaration • ? 
What is the ·•formal-parameter• of ( 1:3 ].!:.£~1 x1 :-= (1, 2 , 3) o? 
If opo possesses the routine • (f~~l a = §tiE, !£~1 h = §tiD ; 

a * h ) ., what •c losed- cla use• is elaborated by the •ca 11 
op(x+1, y)o? 

What is the value possessed by the ejenotation• u((I£~1 a) 
real :a* a)o? 

What- is the value possessed by the •denotation• o(i~1 n, m ; 
I~!J1:n]I_~~1 a1) I£3!1: ( n < m I a1[n] I a1[ml )o? 

5.3 More on parameters 

In the reach of of~~1 x := 1.2, y .- 3.4o, what is the value 
op(x, y)o 
in the reach cf DJ?!Q~ p (.!:_£~1 a, h) 1. 1o? 
in the reach of 
DEfQ~ P = (I..£!!1 a, Igf !:..£~1 b ) .I£3!1 (b +: = a ; b) o? 

in the reach of 
o.I?fQ~ P = (.!:.~! I£~1 a, b) E~.! !£~1 : > 2 I a I b ) o? 

in the reach of DJ?!Q~ p =(.!:.~!.I£.! f£~1 a, .!:.£.! !£~1 b)f~!!1 a 
:= be? 

e) in the reach of of!fQf p = (f ].I£~1 a, b) .!:.~~1 : b[ 1] - a[ 1 )o? 

5.4 syntax of routin e dP.notations 

a) Translate the following into ALGOL 68: 
Of!!:_~f~Qg!:_g p(a, b) !~1~£ a ifl!~gg!:_ a, b 

b : = b * 2 * ac. 

5.6 Proqram example 

a) Is ounito a •constant• or a •variable•? 
b) Why is a oL£.!o not necessary in the •formal-rarameter• ot so? b 
c) Why is an •actual-parameter• o1Q~ I := g[ i )o used in the L1st _ 

•call•? /... 
d) Why was oto not initialized? 
e) If ono is •h and obits widtho is •fl•, what is the value of 

omasko? 
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6 Coercion 

6.1 Fundamentals 

Coercion is a process whereby, from a value of one mode, is 
derived the equivalent value of another mode, e.g., the real 
value possessed by c2.0o is equivalent to [R.2.2.3.1.d] the 
integral value FOssessed by c2o. Derivation of an equivalent 
v:tlue is usually accomplished automatically, i.e., by no 
conscious effort of the programmer. An example is 

0£~!!1 x := 2c 
where the value possessed by o2o is of mode •integral•, but the 
value which is assigned must be of mode •real•. such coercions 
are well known in other languages and are usually describe] 
semantically. In PL/I there are extensive tables [P.Part II, 
Section F] in which the programmer may find what action to 
expect given the attributes of a source and those of its target. 
Coercion in ALGOL 68 is described by means of the syntax, most 
of which is in section 8.2 of the Report. 

The particular coercions which are elabor:tted are generally 
determined by three things, viz., 1) the a priori mode, 2) the a 
posteriori mode and 3) the syntactic position, or "sort". A 
•cast•, which was discussed in section ~. 13, is a useful object 
in which to illustrate coercion, for that is usually its m:tin 
purpose. We recall that a •cast• consists of a •declare r• 
followed by a •cast-of-symbol• followed by a •unitary-clause•, 
which is in a strong position. For example, in the •cast• 

creal : 2o 
the a priori mode of c2o is-;I~tegral•, the a poste riori mode of 
its •unitary-clause• is that specified by its •declarer•, viz., 
•real•, and the "sort" of its •unitary-clause• is "strong". The 
p:uticular coercion called into play i s "widening" from 
•integral• to •real• and is governed by a syntactic rule 
rH.8.2.5. 1.a], whose details we will not now unravel. 

6.2 Classification of coercions 

There are eight Cliffe rent 
"dereferencing", as in 

"neprocedurinq", as in 
C£~!!1 : randomc 

"procedurinq", as in 
CQ!:.2f £~~1 : x1[i)c 

"uniting", as in 

"widening", as in 

"row in q ", as in 
"a"a 

11 hippinq", as in 
C£~!!1 : .§flED 

and "voiding", as in the •void-cast-pack• 
c (: p) 0 
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dereferencing and deproceduring are together known as "fitting"; 
these two together with proceduring and uniting are known as 
"adjusting"; and all eight are together known as "adapting". The 
reader will find that this terminology is used in the 
metanotions [R.1.2.3.k,l,m]. A diagrammatic scheme is shown in 
figure 6.2. Some of the above examples would not normally appear 
in useful programs. They are chosen for illustrative purposes. 

COERCION TREE 

strong •••••• ADAPTED 
~---------T-------r------T--------, 
I I I I I 
1 widened rowed hipped voided 

firm •••••••• ADJUSTED 
r------------~--------------, 
I I I 
1 proced ured united 

weak •••••••• FITTED 
~-----------------------, 
I I 
1 dereferenced 

soft ••••••• deprocedured 

Fig.6.2 

6. 3 Fitting 

The result of dereferencing a name is to yield the value to 
which it refers. This has been touched upon already in section 

strong-real-unit •••••••••••• 
I (2) 

strong-real-base 
I 

strongly-dereferenced-to-real-base 
I (3) : 

reference-to-real-base 
I 

reference-to-real-mode-identifier 
I 

cxc 
: { 1) 
0 r-----, 

o o->--1 \- •••••• : 
0 L------J 

Fig.6.3 

2.12 and elsewhere. Figure 6.3 shows the parse of axe as a 
•strong-real-unit•. At 1, in the figure, cxo, as an 
•identifier•, possesses a name and envelops the mode •reference­
to-real• and at 2, as a •unit•, cxc possesses a real value ani 
envelops the mode •real•. The coercion is shown at 3. 
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The result of deproceduring is the elaboration of a routine 
(without parameter~, e.g., the •cast• D£~~! randomo forces 
the elaboration of the routine possessed by orandomc and 
delivers the next random real value as the value of the •cast•. 
Both dereferencing and deproceduring are classified together as 
"fitting" [R.1.2.3.m], and are the two coercions which occur 
most frequently. 

6.4 Adjusting 

Both proceduring and uniting, together with fitting 
(dereferencing and deproceduring) are known as "adjusting" and 
are so grouped because they can all occur in certain syntacti~ 
positions. 

The result of proceduring is a routine. For example, the 
value possessed by the •cast• DE!:Q£ £~~1 : x1[i]c is the routine 
• (I~~! x1[i])•. It may be recalled, from section 5.2, that a 
routine is syntactically similar to a •closed-clause• and that, 
in the case where there are no •parameters•, there are no 
•routine-denotations•. The proceduring coercion makes them 
unnecessary. 

Uniting has only a syntactic effect. In the terms of the 
Report, the elaboration of a united •coercend• is the same as 
that of its pre-elaboration [ R.1.1.6.i ]. This means that no 
change of value is involved. Actually, an implementation will 
find it necessary, upon uniting, to attach to the value some 
record of its mode, so that this may be tested later, especially 
if a •conformity-relation• is involved, but the particular 
details of the implementation mechanism is not of concern to the 
programmer. He should, however, be aware that it probatly occurs 
and thus not make use of united modes unnecessarily. The subject 
of unions is an advanced topic which we shall postpone to 
chapter 7. Uniting occurs, for example, in c~n!~nCin.t, Q~~!) 
!£~~[]. 

6.5 Adapting 

The coercions known as wideninq, rowing, hipping ~nd 

voiding, together with adjusting are collectively known as 
"adapting" and form the set of all possible coercions in the 
language. These are so grouped because they can all occur in 
certain syntactic positions. 

The effect of widening is to deliver a value of one mode 
which corresponds to a given value of another mode. One may 
widen from •integral• to •real• [ R.8.2.5.1.a] and from •real• to 
complex [ibid. b). Consequently, each of the following possesses 
the value •true•: 

o (£~~! : 2) = 2. Oc 
c(fQ.!£1 : 2) = 2.0 ! O.Oc 

One may also widen from bits to •row of boolean• [ibid. c) and 
from bytes to •row of character• [ibid. d]. If obits widthc is 
•4•, then o ([ ]QQ~! : Ql o has a value which is that of o (!~!§~, 
!£~~. ~~. !M~)c. Similarly, if obytes widtho is •4•, then 
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c(§!!~!!g : f!~ "abc") "abc~"c possesses the value •true• 
(assuming that the anull charactero [R.10.1.1] is"~"). More 
than one coercion may be involved in one •cast•, e.g., cfQ~£1 
in requires first a dereferencing of cio to yield an integral 
value, a widening of the value to •real• and another widening to 
complex. 

The effect of rowing is to deliver a multir-le value which 
is a row of zero or one elements. It occurs, for example, in 
or l.E~~.! :c and in c[ Hn! : 2c. The value in the first case is a 
row of zero elements, each of mode •real•. In the second case 
one obtains a row of one element of mode •integral•. Note that 
c[, ll!!! [ 1!!!! 2n involves two consecutive rowings which 
result in a one by one matrix. The same effect can be attained 
by o[,]i!!! 2c, since rowing is recur s ive ( R.8.2.6.1.a]. The 
•cast• c[, 1~221 :c will deliver a boolean matrix with one r:ow 
which has no columns. Note that when a constant is rowed, the 
r:esult is a •constant• multiple value, but if a •variable• is 
rowed the result is a multiple •variable•. This effect is 
achieved syntactically by the metanotion •REFETY• in the rule 
for rowing [ R.8.2.6.1.a ]. Thus, c_;:~f[ ]£~~1 : xc will have the 
effect of creating a new multiple value whose only element is 
oxo and the •identity-relation• o (£~f[ ]!:~~!-. x) [ 1] :=: xc 
possesses the value .true• no matt e r what value is referred to 
by oxa. Of course, it is arran ged [R.8.2.6.1.b) that an empty 
cannot be r-owed to a •var-iable•, i.e., c(f~if ]E~~1 :)c is 
syntactically invalid. 

The coercion known as hipping takes care of the •skip•, 
D§!i£n, the •nihil• D!!i1c, and •jumps• like ogQ_.!;Q novosibirskc. 
This coercion is somewhat different from the others in that, if 
it occur:s, then no other coercions may take place. Both the 
•skip• and the •jump• may be coerced to any mode, but the 
•nihil• may be coerced only to a mode which begins with 
•reference-to•. The elator:ation of a •skip• delivers some 
(undefined) value of the r e quired mode, e.g., the value of D!~~!-. 

§!!Eo is some real value. The value of a •nihil•, r-epr:esented 
by og!1o, is a unique name which refers to no value. !his means 
that c(E~f £~~1: gil:> :=: (!~! E~~1: !!!.!)cis •true•, although 
c(f~l r:e~1 : ~!!E) :=: (E~f !:~~1 : §!iE)o is un li kely to beC 1>. 

Observe that c (!;~l i!!! : !!i.! ) :=: (E~f £~~1 : !!i.!> c is not an 
•identity-relation• because the modes of its •tertiaries• do not 
agree. Also, c(f~! !:~~1 !:~! f~f £~~1 !!l!> o cannot be 
elaborated, since no dereferencing can be don e on a •nihil• 
[R.8.2.1.2 Step 2). The elaboration of a ccerced •jump• is a 
jump except in a case like c(£fQf ¢YQlQ¢ : 9Q_!Q l)c, where the 
value delivered is a routine and the jump itself is not 
performed (B.8.2.7.2.b]. Note however that c(f~l E!:Qf ¢yQi~¢ 
gQ_!Q l)a does not deliver: a routine. 

There remains one other coercion, viz., voiding. The effect 
of voiding is to discard whatever value is involved. Thus 

<t> It will be interesting to try out some of the compilers on 
this point. 
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a(: 2)a will not deliver the value •2•. The •void-cast-pack• 
a(: random)o delivers neither a routine nor a real value, but 
causes orandomo to be elaborated (deprocedured) once, whereupon 
the real value delivered is discarded (see •NCNPROC• 
[R.8.2.8.1.b]). This may incleed be just what the programmer 
desires. In the reach of o£rOf I~~! p := randomc, the ope in a(: 
p) a is dereferenced, deprocedured and then voided. The 
•declaration• c~fQf ¢1QiQ¢ g = (: p)o, however, delays these 
coercions until cqc is elaborated. He who can correctly perform 
the syntactic and semantic analysis of D£Eg£ I~~1 p := random ; 
.EEQ£ ¢1QlQ¢ q = (: p) ; (: g) ; .§~.i£D, has no need of further 
advice concerning co~rcion. 

6.6 Syntactic position 

The coercions which may occur depend Ufon the syntacti~ 
position of an object in the •program•. There are four sorts of 
syntactic position, viz., strong, firm, we:~lt and soft. In wh:~t 
has gone before, we have concentrated our attention on the 
•cast• because its •unitary-clause• is strong and in this 
position all coercions can occur; moreover, strong coercion is 
the main purpose of the •cast•. In firm positions only those 
coercions collectively known as adjusting are relevant. In weak 
positions fitting is relevant. A soft position permits only 
deproceduring (see figure 6.2). 

some examples of strong positions are •actual-parameters•, 
e.g., a2o in of~~! x = 2a, •sources•, e.g., c2c in ax:= 2o, 
•conditions•, e.g., ax=yo inc( x=y 1 l )a and •subscripts•, 
e.g., cia in ax1[ i)c. In these positions the a posteriori mode 
(i.e., the mode after coercion), is dictated by the context. 
Examples of firm positions are •operands•, e.g., axe in D~E§ xo, 
and •primaries• of •calls•, e.g., ncoso in acos(x)c. Examples of 
weak positions are •primaries• of •slices•, e.g., ax1a in 
ax1[ i lc and •secondaries• of •selections•, e.g., ocellc in anext 
of cello. Examples of soft positions are •destinations•, e.g., 
cia in DX := yo and •tertiaries• Of •identity-relations•, e.g., 
cxc in ax :=: xxc. Figure 6.6.a shows an •assignation• in which 
m:~ny of these positions occur. 
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c1 + 2c. Since both •operands• could be widened, is it addition 
of real values or addition of integral values? Because of this 
uncertainty, the coercions involved in •operands• must be 
restricted to those classed as adjusting. This is achieved by 
making •operands• firm [R.8.4.1.d,f]. The only coercions 
permitted for •operands• are therefore dereferencing, 
deproceduring, proceduring and uniting. In particular, since a 
•skip• can only be hipped and hipping can only occur in strong 
positions, we conclude that the object c2~iE + E~~~n is not a 
•formula•. 

We may recall that if a •variable•, say cx1c, is sliced, 
then the result, say cx1[i]c, is a •variable•. Similarly the 
•selection• cnext of cello from the •variable• ccellc is also a 
•variable•. This means that we need a position in which both 
deproceduring and dereferencing are permitted, but that 
dereferencing, in this position, must stop short of removing a 
final •reference-to• from the a priori mode. Remember that we 
may wish to write cx1[i] := 3.14c or cnext of cell := cell1c and 
that the mode of a •destination• must begin-with •reference-to•. 
Such a position is known as weak. It involves only those 
coercions known as fitting, with the special proviso concerning 
dereferenci nq. 

Finally, in the •destination• of an •assignation•, e.g., 
cxc in ex := yo, only deproceduring can be permitted and such a 
position is known as soft. 

Note that the word "strong" is used in the sense of 
strongly coerced, so that a strong position indicates strength 
from outside and not strength from inside. 

In the above we have considered the syntactic positions 
arising from the strict language only. The programmer, however, 
is generally more concerned with the extended language, for that 
is what he uses. It is therefore appropriate to examine the 
syntactic positions for constructs in the extended language. In 
particular, the repetitive statement [R.9.2], shown in figure 
6.6.b, contains the objects ca, b, c, de and ceo, all of which 
are in a strong position. Note that cia is the •identifier• of 
an •identity-declaration• and is therefore not coerced. Its mode 
is •integral• (not •reference-to- integral•) and therefore 

strong-unitary-void-clause 
I . ______________________ .J._ ____________________ _ 
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no assignment may be made to it. Moreover, the value of this oic 
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is unavailable outside of the •clauses• cdc and ceo, no matter 
how the elaboration of the repetitive statement is complet e d. 
Also observe that the repetitive statement itself is strongly 
voided and therefore cannot deliver a value. This is traditional 
for several programming languages, so will be understood easily. 

6.7 Coercends 

Coercions are introduced at certain syntactic positions but 
are not carried out except upon •coercends•. For example, i n 
D£!2£ Egf E~g! p = ( i < 9 I x1[i] I yl[i] )c, the •condition~l ­
clause• c ( i < 9 1 xl[ i) 1 y1[i] ) a is strong and the mode 
reguired is that specified by D£E2f E~! !~~!c. However, ~ 
•conditional-clause• is not a •coercend• itself. In fact, if -the 

-...., value of cic is •2•, then the routine possessed by cpc is I 11 (\~! 
- !:~~! : xl[iJ>, •~ It is therefore the •base• cxl[i]c wh'i-eil is 

coerced and no~he •conditional-clause• becaus e a •base• is a 
•coercend•. 

•Coercends• are easily distinguished and we have ~et them 
all before, although we have not, as yet, cl~ssified them as 
such. A •coercend• is either a •base•, e.g., cx1[i ]c, a 
•cohesion•, e.g., cnext 2! cello, a •for mula•, e.g., DgQ2 xc o r 
a •confrontation•, e.g., ox .- yo [R.8.2.0.1.a, 1.2.4. a] . A 
certain set of coercions may be implied by the syntactic 
position (sort) of the object, but none of these coercions wi l l 
be elaborated on that object unless it is a •coercend•. The sort 
is therefore passed to the •coercends• within the object. Whe n a 
•coercend• is met, then all coercions implied by that syntactic 
position must be completely expended. 

6.8 A significant example 

Perhaps we should now look closely into the reason why 
D£f2f t~oigt p = randomo 

is not an •identity-declaration•. The i ntention was, perha ps, 
D££2£ ¢!2!Q¢ p = (: random)c or D£!2f reg! p = randomc. First we 
must observe that no extension could have been applied si nce 
crandomc is not a •routine-denotation• [R.9.2.d], so this mus t 
be parsed as an •identity-declaration• in the strict langua ge . 
An attempt to parse DEfOC tvo!g¢ p = randomo must begin with the 
facts that ope is a •procedure-void-mode-identifier• ~n1 

•random• is a •procedure-real-mode-identifier•. Since crandomo 
is a •base•, we ~ust therefore attempt to find production ru l es 
in the hope of showing that a •procedure-real-base• is a 
production of •strong-procedure-void-base•. The production rule 
for any given notion can be obtained from only one rule of t he 
Report. If we take that rule [R.8.2.0.1.d] and replace t he 
metanotion •COERCEND• appropriately, we have 

•strong procedure void base : procedure void base ; 
strongly ADAPTED to procedure void base.• 

Since crandomo is not a •procedure-void-base•, ve must new see 
whether it can be produced from the seccnd alternative. This 
means replacing •ADAPTED• by each one of its eight terminal 
productions, i.e., by •dereferenced, deprocedured, procedured, 
united, widened, rowed, hipped• and •voided•. ie look at each of 
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these in turn. In the rules for dereferencing [ R.B.2.1.1.a], we 
have 

•strongly dereferenced to procedure void base : 
strongly FITTED to reference to procedure void base• 

Thus the mode enveloped has become longer, i.e., from 
•procedure-void• to •reference-to-procedure-void•. The same will 
apply to deproceduring [R.B.2.2.1.a]. Because these two rules 
feed into each other, we can only lengthen the mode (in the 
sense used above) by using them. Thus we cannot reach our goal 
through this route. 

The rules for proceduring [R.B.2.3. 1.a J yield 
•strongly procedur~d to procedure void base 

void base ; 
strongly dereferenced to void base 
strongly procedured to void base 
strongly united to void base ; 
strongly widened to void base 
strongly rowed to void base.• 

Each of these must now be examined. In the first place , crandomc 
is not a •void base•, so we dismiss the first alternative. For 
the others the words (protonotions) •dereferenced- to- void•, 
•procedured-to-void•, •united-to-void•, •widened-to-void• and 
•rowe:l-to-void• lead us nowhere in the appropriate sections 
[ R. 8. 2. 1 • 1 I 8 • 2. 3. 1 I 8. 2. 4 • 1 I 8 • 2. 5. 1 I 8. 2 • 6 • 1 ] • 

By examining the left hand sides of the rules for widening 
(R.B.2.5.1], rowing [R.B.2.6.1.] and voiding [R.8.2.8.1], we can 
see that productions for •strongly ADAPTED to procedure voi:l 
base• through any of these routes cannot be found. Finally, the 
rules for hipping ( R. B. 2. 7. 1] cannot be used since they apply 
only to •skips•, •nihils• and •jumps• and crandomo is not one of 
these. This completes our deduction that D££Q£ t12!gt p = 
randomc is not an •identity-relation•. 

Note that for D£IQ~ ¢!oig¢ p = (: random)c, the significant 
prod uc tio n Js 

•strongly procedured to procedure void base : 
void base. • 

[R.8.2.3.1.a]. Also, for D££2£ f~gl p = randomc only the empty 
coercion is required for crandomo is already of a priori mode 
•procedure-real•. 

6.9 The syntactic machine 

The coercions are, with the exception of balancing of 
modes, all contained in the syntactic rules in section 8.2 of 
the Report. A thorough understanding of coercion therefore 
requires a knowledge of these rules and a certain dexterity in 
their use. The reader is encouraged to try some syntactic 
analysis (parsing) for himself, but to help him on the road we 
give below a complete analysis, as a •strong-real-unit•, of oic 
in the •cast• creal ic, where cia is in the reach of the 
•declaration• cini--Ic. The •identifier• cio is thus a 
•reference-to-iniegral-mode-identifier• and its a priori mode is 
•reference-to-integral•. The cr~glc in the •cast• indicates that 
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the a poste~io~i mode is ·~eal•. The ~efe~ences within b~aces 
a~e to the pa~ticula~ rules of the Report which are used. 

•stronq real unit• ••••••••••••••••••••••••••••••••••••••••• 1 
•strong unitary real clause•{6.1. 1.e l ...................... 2 
•stronq ~eal tertiary• (8.1.1.al ••••••••••••••••••••••••••• 3 
•st~ong ~eal secondary• { 8. 1.1.b} •••••••••••••••••••••••••• 4 
•st~ong ~eal primary• ( 8. 1.1.c} •••••••••••••••••••••••••••• 5 
•st~ong real base• { 8. 1. 1.d} ••••••••••••••••••••••••••••••• 6 
•st~ongly widened to real base• (8.2.0.d} ***************** 7 
•st~ongly de~efe~enced to integral base• {8.2.5.1.a} ****** 8 
·~eference to integral tase• {8.2.1.1.a} ••••••••••••••••••• 9 
•refe~ence to integral mode identifier• {8.6.0.1.a} •••••••• 10 
•1 e t te r i • { 4 • 1 • 1 • b } ••••••••••••••••••••••••••••••••••••••• 11 
•letter i symbol• {3.0.2.b} •••••••••••••••••••••••••••••••• 12 

In the above analysis the two coercions occu~ in lines 7 
and 8. In lines 1 to 6, the sort, i.e., •st rong•, is carrie:i 
through the parse until it meets with the •coercend• (in this 
example a •base•) in line 6. In lines 9 to 12 all the coercions 
implied by the •st~ong• in line 1 have been expended. The 
elabo~ation natu~ally follows the parse in the reverse orde~. At 
line 10 the •identifier• cic is identified with its defining 
occurrence and the a priori mode, •reference-to-integral•, is 
established. (This is usually accomplished by an ea~ly pass of 
the compile~.) In line 8 the derefe~encing occurs and this is 
followed by widening in line 7. No fu~the~ semantics is involved 
in lines 6 down to 1. 
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In general, given a set of modes, a balanced mode must be 
found which is such that each one of the given modes may be 
coerced to it. In achieving this, at least one of the given 
modes must be coerceable using the given sort, whereas the 
others may be strongly coerced, i.e., the limitations of the 
syntactic position must be accepted by at least one of the given 
modes, otherwise the balancing is not possible. An example in 
which a balance is not possible is o2. 3 + ( p 1 .§!!~ 1 gQ_!Q 
k )o, which is therefore not a •formula•. 

6.11 Soft balancing 

A simple exa~ple of soft balancing is 
o( p I xx I x) := 3.Hc 

Examination of this object suggests an •assignation• in which 
the mode of the •destination•, c ( p 1 xx 1 x ) c, should be 
•reference-to-real•. A successful parse is thus assured if the 
balanced mode of the •conditional-clause• is •reference-to­
real•. However, the mode of cxxo is •reference-to-reference-to­
real•, whereas that of cxc is •reference-to-real•. The mode of 
cxxo may be coerced to the balanced mode by dereferencing (once) 
and that of oxo by the empty coercion. If we recall that the 
only coercion which is relevant in soft positions is 
deproceduring, then it is clear that cxxo cannot be softly 
coerced to the balanced mode. One must therefore allow oxc to be 
softly coerced and oxxo may then be strongly coerced 
(dereferenced). A sketch of the parse of the •destination• 

reference-to-real-destination 
I 

soft-conditional-reference-to-real-clause 
I 

r-------T--------------~-~---------------------, 
I I I I 

if-symbol condition soft-choice- fi-symbol 
1 1 reference-to-real-clause 1 
I I I I 
I I r-------~--------1 I 
I I I I I 
1 1 strong-then- soft-else- 1 
1 1 reference-to- reference-to- 1 
1 1 real-clause real-clause 1 
I I I I I 

____ _L_ __ 

-----~- .L 

[J ( p XX X ) 0 

Fig.6.11 

is shown in figure 6.11. The rule which is relevant in this 
parse is 

•FEAT choice CLAUSE : strong then CLAUSE, FEAT else CLAUSE.• 
rR.6.4.1.d], in which •FEAr• is replaced by •soft• and •CLAUSE• 
by •reference-to-real-claus e•. This same rule has an alternate 
production. The complete rule is 

•FEAT choice CLAUSE: strong then CLAUSE, FEAT else CLAUSE 
FEAT then CLAUSE, strong else CLAUSE.• 
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The second alternate is clearly necessary for parsing the 
•assignation• 

..__ c( p I x I := 3. no 
for in this case cxxc must be coerced. 

Now consider the •assignation• 
c( p I x I y) .- 3.14c 

Here either oxo or eye may be chosen to be soft. It follo~s that 
o ( p I x 1 y ) c may be parsed as a •reference-to-real-
destination• in two distinct ways, i.e., either the axe or the 
eye may be chosen as soft ~ith the other strong. This is one of 
the rare examples of syntactic ambiguity in ALGOL 68. The 
ambiguity might hav'e been avoided, but at the cost of 
considerable complexity in the grammar. Since no semantic 
ambiguity is involved, greater clarity in the grammar is 
achieved by allowing a harmless syntactic ambiguity. 

6.12 Weak balancing 

A simple example of ~eak balancing is 
ere of ( p 1 1 i 2 1 3 ) o 

Here the •clause• o( p 1 1! 2 T 3 )n is the •secondary• of a 
•selection• and is therefore in a weak position [R.8.5.2.1.a]. 
The mode of o1 ! 2e is •complex•< 1 >, but that of c3o is 
•integral•. It is clear that the object o3o must be widene:i 
(twice) to •complex•, but widening cannot occur in a weak 
position. Thus e1 i 2e must be weakly coerced (the coercion is 
empty) and e3e may then be strongly coerced (widened twice). The 
balanced mode of e ( p 1 1 i 2 1 3 ) c is therefore •complex•. A 
sketch of the parse of this •secondary• is shown in figure 6.12. 

weak-complex-secondary 
I 

weak-conditional-complex-clause 
I 

.. ----------r-------------~-----r-------------------, 
I I I I 

if-symbol condition weak-choice- fi-symbol 
1 1 complex-clause 1 
I I I I 
I I .---------1---------, I 
I I I I I 
I 1 weak-then- strong-else- 1 
I 1 complex-clause complex-clause 1 
I I I I I 
.L .L ------L-----

_____ _J. __ _ 

.J.. 

0 ( p 1 ! 2 3 ) 0 

Fig.6.12 

The rule used in this parse is the same as that given in 
paragraph 6.11 above, but this time •FEAr• is replace~ by •weak• 

Cl> Here •complex• stands for •structured-with-real-field­
letter-r-letter-e-and-real-field-letter-i-letter-m•. 
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and •CLAUSE• by •complex-clause•. 

A weak balance which involves a 
ambiguity is 

harmless syntact i:: 

ere .Qf ( f 1 z 1 1 z2 ) c 
in the reach of the •declaration• C£Q~21 z1, z2n. In this case 
the balanced mode is •reference-to-complex• since weak coercion 
does not .remove the last •reference-to• [ R.8.2.1.1.b ]. The 
coercion of both ozlc and oz2o is thus empty and either one of 
them may be chosen as weak. 

6.13 Firm balancing 

A simple example of firm balancing is 
o2. 3 + ( p I 4. 5 1 6 l c 

In this example the •conditional-clause•, o( p 1 4.5 I 6 )o, is 
an •operand• of a •formula• and is therefore in a firm position 
[R.8.4.1.d]. The •operator• o+o is that declared in the 
•standard-prelude• [R.10.2.4.i]. It requires a right •oper<1nd• 
of mode •real•. Thus o4.5o is of the required mode while o6o 
must be widened. Since wi deninq may not occur in a firm 
position, we must choose of.J.5o a s firm and then allow o6o to be 
strong. A sketch of the parse of this •operand• (•secondar y•) is 

firm-real-secondary 
I 

firm-con ditional-real-clause 
I 

r----------~-----------~-----T-------------------, 
I I I I 

if-symbol condition firm-choice-real-clause fi-symbol 
I I I I 
I I r--------L------, I 
I I I I I 
1 1 firm-then- strong-else- 1 
1 1 real-clause real-cliluse 1 
I I I I I __ ---.J. ___ _ -----.L----

c ( p 4.5 6 ) D 

Fig. 6. 1 3 

shown in figure 6.13. The relevant rule is again th e same as 
that qiven in paragraph 6.11 above, l:ut •FEAT• is replaced by 
•firm• and •CLAUSE• by •real-clause•. 

An example of a firm balance in which there is a harmless 
syntactic ambiguity is 

o2. 3 + ( p 1 xx 1 x ) o 
for dereferencing is permitted in a firm position and both cxxo 
and axe may be firmly coerced to •real• by dereferencing. 

6.14 Strong balancing 

A simple example of a stronq balance is 
oy := ( p I x I 1 )o 
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Here the •conditional-clause•, o( p 1 x 1 1 ) o, is a •source• 
and is therefore in a strong position [R.8.3.1.1.c). Both oxo 
and ole must therefore be strongly coerced to the balanced mode 
which is •real•. This means that oxo is dereferenced and ole is 
widened. 

Jbserve that strong balancing is a trivial process for one 
is not faced with the necessity of deciding which of the given 
modes should retain the sort of the syntactic position. They all 
retain strong. In the example above, as in most cases of strong 
balancing, the balanced mode is determined by the context. 
Balancing in firm, weak and soft positions, however, is 
different. In these positions the balanced mode is not given by 
the context but must be decided by examining the given modes 
alone. 

6.15 Positions of balancing 

In the example above we have considered balancing only in a 
•conditional-clause•. This is a typical situation and is 
sufficient to illustrate the principles involved. However, 
balancing may occur in other situations and we shall list e~=h 
of them here. 

•choice-clause• in a •conditional-clause• [ R.6.4.1.c,d] 
e.g., D!!Q§( p 1 1 1 -2.3 ) c. 

•balance• in a •collateral-clause• [R.6.2.1.e) 
e.g., O!!I!!H1, 2.3, x)o. 

•sui te- of-clause- trains• in a • serial- clause• [ R. 6. 1. 1. g] 
e.g., o(( p 1 1 ) ; 3.14 • 1 : l)o. 

•identity-relation• [R.8.3.3. 1.a] 
e.g., cxx :=: xc. 

Although these are the only balancing positions in the 
strict language, the programmer should be aware of th e ir 
implications in the extended language. For examfle 

o ( p I i I : q I x I : r I 3. 1 4 I 5 ) + 2. 3 5o 
requires a firmly balanced mode of •real• for the left •operand• 
of the •operator• o+o. This is achieved by dereferencing and 
then widening cio, by dereferencing oxo, by the empty coercion 
upon c3.14o and by widening oSo. Since an •operand• must be 
firm, either cxo or o3. 14o could be chosen to be firm, and the 
others could then be strong. Note that since widening cannot be 
done in a firm position, both oio and eSc must be strong. 
Another example of firm balancing in the extended language is 

o( i 1 1, 3.4, x, random, xx, §~~E 1 gg_tQ error) + 1c 
in which either c3.14o or oxo or orandomo or oxxo may be firm 
but the others including the •jump• must be strong. 

Notice that 
strongly balanced 
o[ 1:3]£~~1 x1o are 

a •collateral-clause• may be only firmly or 
[R.6.2.1.c,d]. Examples, in the reach of 

o_!!I?~ (x, i, 1) o 
for firm balancing and 

cx1 := (x, i, 1)o 
for strong balancing. 

Balancing 
•completer•. A 

Here, if ope is 
addition is per 
is •integral-) 
• ope rand • must 

The balanc 
is 

Here the left • 
cannot be soft. 
soft and the 
relation• 

the c boice must 
rela tion• 

is syntactical 
•tertiary• may 
above, no sen 
relation• whicl 

I 

in which the or 
left •tertiary; 

6. 16 Program eJ 

The fall< 
divisor of a 
FORTRAN. The AI 
used in the FC 
to help in the 
that all the 
for cgQ_.!Q 11 01 
could perhaps 
•procedure• at 

Dl?.!;Q£ gcdn = 

¢the gcd rest 
Qgll!! !.!!.! I 

1!!..! m : = 0 
¢find the : 
for i to n 
¢'t"he first 

~! (m +: : 
then tal 
ei:SI u: 
th~.!i ton 
el§~ 14: 

< 1 > Translated 
of the Associa 



is a •s ou rce• 
.1.c]. Both oxc 
balanced mode 

tced and ole is 

:ocess for one 
h of the given 
tion. They all 
ses of strong 
Y the context. 

however, is 
s not given by 

given modes 

:ing only in a 
ttion and is 
red. However, 
1all list e~::h 

4.1.c,d] 

R.6.1.1.g] 

ions in 
:e of 

)0 

the 
th e ir 

.ft •operand• 
renci ng and 
pty coercion 
d• must be 
irm, and the 
g cannot be 
t be strong. 
guage is 
) + 1 [] 

ay be firm 

Ly firmly or 
r-each of 

An ALGOL 68 Companion 81 

Balancing may occur in a •serial-clause• which contains a 
•completer•. A trivial example is 

c ( ( p 1 l ) ; 3. 14 • 1 : 1 ) + 2c 
Here, if cpc is •true•, the c1c is widened to •real• before the 
addition is performed (despite the fact that the right •operand• 
is •integral•), for the firmly balanced mode of the left 
•operand• must be decided without reference to the context. 

The balancing of an •identity-relation• is soft. An example 
is 

DXX :=: XC 

Here the left •tertiary• must be dereferenced once and therefore 
cannot be soft. The right •ter-tiary• is therefore chosen to be 
soft and the coercion upon it is empty. In the •identity­
relation• 

DX : =: XXD 

the choice must be made in the opposite order • 
relation • 

ex :=: yo 

The •identity-

is syntactically ambiguous since either the left or the right 
•tertiary• may be soft; however, as in the other case mentioned 
above, no semantic ambiquity exists. A tyFical •identity­
relation• which might arise in list processing is 

c(!~! £~11 : next 2! cell) :=: ~!1c 
in which the cn!1c can only be strongly coerced. This forces the 
left •tertiary• to be soft. 

6.16 Program example 

The following program calculates the greatest common 
divisor of a set of integersCt>. The original algorithm is in 
FORTRAN. The ALGOL 68 version given here retains the labels as 
used in the FORTRAN program (preceded by the letter l) in oruer 
to help in the comparison of the two. It is interesting to note 
that all the jumps of the original naturally disappear except 
for cgQ_!Q 110c in the innermost •conditional-clause•. This 
could perhaps be eliminated by using a •call• of a recursive 
•procedure• at the •label• cl10:c. 

DE!Q£ qcdn = (!~! [1:] !ni a ¢the given set of integers~ ; 
!~![ 1 :~E~ a] in! z ¢the resulting multipliers¢) 

¢the qed result¢ !~! : 
Q~g!~ ini n = YE~ a ¢the number of integers¢ ; 
in t m : = 0 , k, sgn ; 
¢find the first non-zero integer¢ 
fori ton while a[i] = 0 do (11: z[i] := 0, m := i) 
¢the first non=zero integer~ if any, is in position m+1¢ 

if (m +:= 1) > n ¢now it is in position m~ 
!lign ¢all are zero, so exit with resultt 0 
elsf 13: m = n 
th~n ¢only the last one is non-zero¢ z[m] := a[n) 
g1§g 14: ¢check the sign of a[m]¢ 

<t> Translated from algorithm 386 by G.H~Bradley, Communications 
of the Association for Computing Machinery, Vol 13, No 7, 1970. 
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Egf !nt am= a[m] ; sgn := ~jg~ am ; 
!~! c1 : = am := a .bs am ; k := m + 1 ; 
15: ¢calculate via-n-m iterations of the gcd algorithm¢ 
for i from m+1 to n while c 1 I 1 do 
--~~gin-£~! i~!-ai =-afi] ; --

Jont q, y1 := 1, y2 := 0, c2 .- ~£~ ai k .- i 
17: if ai = 0 
!h~!!-ai := 1 z[i] .- 0 
else 11:>: ---.u q • - c2 + c 1 (c 2 +: := c 1) I 0 

Ih~.f y 2 - : = q * y 1 ; q : = C 1 + c 2 ; ( c 1 +: : = c 2) I 0 
!h~!! y1 -:= q * y2 ; 92_!2 110 ¢eliminate the jump?¢ 
else 115: (c1 .- c2, y1 := y2) 
ti-:--- . 

120: z[ i) := (c1 - y1 * am) + ai 
ai := y1 ; am := c1 !i ; 

13 0 : ~~i.E ~~9. ; 
¢ if k=n, then the following iteration is empty¢ 
125: 160: !2E j fro.!!J k+1 12 n 9.2 (165.: z[j] := 0) 
140: f2~ i !E2~ k-m £1 -1 t2 2 12 

(z( j] •:= a[ j+1] ; 150: a[ j] •:= a[ j+ 1 ]) 
z [ m ] : = a [ m + 1 1 * sg n ; 
1100: am 
fi 

endD 

Review questions 

6.1 Fundamentals 

a) What three things determine the particular coercions? 
b) What are the four sorts of syntactic position? 
c) Is or~~.! : i!!!o a •cast•? 
d) Is oreal : boola a •cast•? 
e) what -coercion-occurs in a[ ]Q22! lQ1o? 

6.2 Classification of coercions 

a) How many different coercions are there? 
b) What coercions occur in Dreal : intD? 
c) What coercions are classified as-fitting? 
d) What coercion occurs in - c( ]E~!!.! : 3. He? 
e) What coercion occurs in Di!!I : g2_!Q. ko? 

6.3 Fitting 

a) What coercions occur in of~!!! : !~f ref ref realo? 
b) In the reach of or~f I~f I~~! xxxo, ~hat-coercions occur 

cref real : xxxo? 
c) In--the--reach of cr~f E~f !!!! rpia, what coercions occur 

oi~! : r pic? 

in 

in 

d) In the reach o 
c£Q.2.! : prbo? 

e) What rules a 
•real-cast•? 

6.4 Adjusting 

a) What coercions 
b) Is uniting a f 
c) What kind of v 
d) Is oeEQf ¢YQiQ 
e) Is DEIQf ¢Y2iQ 

6. 5 Adapting 

a) Is hipping an i 

b) What coercion t 

c) What coercions 
d) what coercions 
e) What coercions 

6. 6 Syntactic 

a) What coercions 
b) of what sort i! 
c) Of what sort i~ 
d) In the range ot 

in a rr 1 x[ 2 ] • -
e) Of what sort i~ 

6.7 Coercends 

a) What are the fa 
b) List all the • 

y + 3 fie. 
c) Is ox :;;;;-nile a 
d) IS DXX :=-nile 
e) Is D!!i.! :=-,~a 

6.9 The syntac 

a) What rules are 
b) Is OfQ..!!!E! : !!!!! 
C) What rules are 

1) 0? 
d) what rules ar 

void-unit•? 
e) Is ox + ni!o a 

6.10 Balancing 

a) can the modes • 
balanced to re, 

b) Can the modes • 
c) What is the 

•reference-to-. 
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0 

pr t what coercions occur in x. / d) In the reach of e£IQ£ £gf ~22! 
e~Q.Q! : prbe? 

e) What rules are used in the parse of erg~! : randomc as a 
•real-cast•? 

6. 4 Adjusting 

a) What coercions occur in ey.!!.!2.!! (fg~}, !!221} : randoma? 
b) Is uniting a fitting coercion? 
c) What kind of value results from a proceduring? 
d) Is CE£2£ ¢Y2.!Qt sine a •cast•? 
e) Is CE£Q£ ¢YQ!Q¢ : randoma a •cast•? 

6.5 Adapting 

a) Is hipping an adjusting coercion? 
b) What coercion occurs in aQQQ! : 9.Q._!Q k a? 
c) What coercions occur in ax := ( 1 > 2 I 3.4 I 5 } e? 
d) What coercions occur in a[ ]E~~! : randomc? 
e) What coercions occur in ay.!!!2.!! (( ]£.~~}, Q2Q!} : randome? 

6.6 Syntactic position 

a) What coercions may occur in weak positions? 
b) Of what sort is cie in ax1[i+1 ]e? 
c) Of what sort is an1a in ax 1 [ n 1 [ i ) ]n? 
d) In the range of e£gf E_gf [ ]!:g!!! r r 1 xa, what coercions oc::;ur 

in arr1x[2] :~ 2.3a? 
e) Of what sort is ex a in ex : = yo? 

6.7 Coercends 

a) What are the four kinds of •coercend•? 
b) List all the •coercends• in elf a Q.f b !hg.!! x := 2 g}§g x . -

Y + 3 f!_c. 
c) Is ex := .!!!lc an •assignation•? 
d) Is axx := nile an •assignation•? 
e) Is cg!_} :=-loan •assignation•? 

6.9 The syntactic machine 

a) What rules are used in parsing a£Q.~E! : ie? 
b) Is CfQ!E!: Y..!!iQ.!!(l.!!!, ~22!)a a •cast•? 
c) What rules are used in the parse of aE£2£ tyg_!g¢ p = (: x := 

1) a? 
d) What rules are used in the parse of arandoma as a •strong­

void- uni t•? 
e) Is ax + ni!a a •formula•? 

a} 

b) 
c) 

6.10 Balancing 

can the modes •real•, •integral• and •format• be strongly 
balanced to real? 

can the modes •real• and •integral• be strongly balanced? 
What is the softly balanced mode from the two modes 
•reference-to-real• and •rrocedure-real•? 
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d) What is a firmly balanced mode from the 
•integral•, •procedure-integral• 

set of modes •real•, 
and •reference-to-

in teqral•? 
e) Can the modes •real• and •boolean• be balanced? 

a) 
b) 

c) 

6.11 Soft balancing ~~,~~~\b] 
Is the parsing of c ( p 1 xx 1 y ~:= • 14c :tmbiguous? 
In the reach of cEfQf £~! f~~1 p v ow is c( p I px 

:= 3.14c balanced? 
In the reach of DEfQf £~! I~~1 p , how is c( p 1 px 

k ) := 2c balanced? 

XX ) 

d) Can the pair of modes •procedure-row-of-r eal• and •reference­
to-real• be softly balanced? 

e) Can the modes •reference-to-procedure-reference-to-bcolean• 
and •reference-to-reference-to-boolean• be softly balanced? 

a) 

b) 

c) 
d) 
e) 

6.12 Weak balancing 

In the reach 
balanced? 

Can the modes 
integral- mode• 

Is cl + re 2! ( 
Is ere 2! ( p I 
How is oim of ( 

of c( ]£~~1 xlc, how is c ( p I x 1 1 2 ) [ i )c 

•reference-to-real• and •union-of-real-and­
be weakly balanced? 
p 1 1.2 1 3.4.! 5 )c a •formula•? 
1 i 2 1 3! 4 )o syntactically ambiguous? 
p random 1 0 1 2 )c balanced? 

6.13 Firm balancing 

a) Is o§~iE 1 §~!pc a •formula•? 
b) Can •union-of-reference-to-real-and-reference-to-integral-

mode• and •real• be firmly balanced? 
c) Can • procedure-real• and •reference-to-real• be firmly 

balanced to •procedure-real•? 
d) Is o2 + ( p 1 x 1 3.14 ) c syntactically ambiguous? 
e) Is cab§ ( p I ti.!:!~ I "a" ) c a •formula•? 

6.15 Positions of balancing 

a) Can the set of modes •reference-to-reference-to-procedure­
r?.ference-to-real•, •reference-to-procedure-reference-to­
real•, •reference-to-reference-to-real• and •reference-to­
real• be weakly balanced? 

b) Is c ( i 1 xx, !!!!:, §kip 1 92_.!2 error :=: xc an •identity­
relation•? 

c) Is c ( ( p I l 1 l ; .!£.!!~ • l 1 : i > 0 I 12 ) ; f~.1~~ • 12 : 
1 )o a •closed-clause•? 

d) How is D.!,!.EQ ( 1, 2.3, 4 i 5.6, x, xx, i )o balanced? 
e) Is c( p 1 .!!.!.!: 1 §~!E) := 3.14c an •assignation•? 

6.1b Program example 

a) Describe the coercions involved in the elaboration of c(m +:= 
1) > no. 

b) Describe the elaboration of oint c1 := am := abs amo. 
c) what is the purpose of the •declaration• or~!.!!!.! ai = a[i)o? 

d) Why does a • 
e) Can you eli1 

procedure < 
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7 United modes 

7.1 United declarers 

Although internal objects are always of one non-united mode, 
external objects such as •expressions• [R.6.0.1,a,b] may be of 
united mode, indicating that the mode of the v~lue possessed is 
not known until elaboration (run time). ro allow for this, it is 
necessary for the language to provide •declarers• which specify 
united modes. Examples of such •declarers• are oyn!.2n<in1, 
Q221> , Yn!.2n <( JE~~J:, r Jch~E> , Yni2n <E~.n 1!!!1. E~n JE~±> , 
~!!!Q!!(~,yni.QB(Q, ~), Q)o. 

The syntax of •united declarers• is not trivial but we may 
simplify it to the following: 

united declarer : union of symbol, 
open symbol, declarer list proper, close symbol. 

declarer list proper declarer, comma symbol, declarer ; 
declarer list proper, comma symbol, declarer. 

The syntax of the Report [R.7.1.1.cc, ••• ,jj], however, is an 
intricate exercise in the use of metanoticns. Its effect is to 
allow, syntactically, that unions may be both commutative and 
associative, and that the modes of the union may be treated in 
the sense of mathematical set theory. This means that the same 
united mode is specified by the •declarers• D.!!!!l~!!(~, Q, ~), 

~!!!2!!(~, f, ~), Y!!!Q!!(~, .!!Bl.2B(Q, ~))o and cyn!Q!!(.!!!!!Q!!(f, ~), 
Y!!!Q!!(~, ~))c. 

7.2 Assignations with united destination 

Because •declarers• specifying united modes exist, the 
declaration of •variables• using such •declarers• is possible. 
Such a •declaration• might be cyn12!! <in!, Q2.21l ibc, whereupon 
the mode of cibo is •reference to union of integral and bcolean 
mode•. An assignment may be made to such a •variable•, 

reference-to-union-of-integral-and-boolean­
mode-assignation 

I 
r---------------~~--------------, 

I I I 
reference-to-union-of- becomes- strong-union-of-
integral-and-boolean- symbol integr~l-and-boolean-

destination 1 source 
I I I ( 1 ) 
1 I boolean-
! I base 
.l,_ 

cib 
(4) 

:= 
__ .l,_ 

(2) 
o ( 3) r r------1 : • • • • • • r---, 

o o-->--~1 !=======<========! 
0 LL------.J 
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but the •assignation• aib := truec is syntactically pcssihle 
only because of the uniting--coercion to which the •base•, 
c!!!!~a, resulting from its strong position as a •source•, is 
subjected (see figure 7. 2 at 1). The •assignation• cib : = 1o is 
also valid. In both these assignments the internal object 
assigned does not change under coercion, and the object o~!~~o 
possesses the same value whether it is considered, a priori, as 
a •base•, or, a posteriori, as a •source• (see the figure at 2). 
Note that cibc possesses a name (see figure at l), whose mode is 
•reference to union of integral and boolean mode•, but that this 
name may refer to a value which is either of mode •integral• or 
of mode •boolean•, since values are not of united mode (i.e., a 
mode which begins with •union of•). Also, the mode of tht:: value 
referred to by su~h a •variable• as cibc, can be determined, in 
general, only at the time of elaboration of the •progr::am• (not 
at "compile time"). These considerations lead one to suspe~t 
that the use of united modes implies storage allocation or run 
time organization methods which must be more elaborate than 
those required when such modes are not used (see the figure at 
4). A certain pri~e must therefore be paid for the use of united 
modes, but in some situations they are essential (see[R.11.11]); 
moreover, ALGOL 6B is designed to minimize those places in a 
•program• where a run time check of the mode of a value is 
necessary. Such a check is unnecessary for the •assignations• 
cib .- !£!!~C and cib := 1c. These checks are known as 
•conformity-relations•. Before passing to these we examine two 
further •assignation s•. 

In the range of the •declaration• chn~ n, QQQ.! pa one might 
be tempted to consider the objects en := ibc and cp := ibo in 
the hope that the assignment would take place, if possible. 
However neither of these two is an •assignation•, for in both 
cases, though the mode of the nestination begins with 
•reference-to•, it is not followed by the mode of the •source•. 
In particular, there is no deuniting coercion. Thus we must rule 
them out as not belonging to ALGOL 68. 

7.3 Conformity relations 

•Conformity-relations•, like •assignations•, •identity-
relations• and •casts•, are •confrontations•. Examples of 
•conformity-relations• are: ci ::= ir, £g!.! :: x Qf qc and ca 
and b ::= i + 2 * xc. The syntax of •conformity-relations• might 
be-written 

conformity relation : tertiary, conformity relator, tertiary. 
conformity relator : 

conforms to and becomes symbol ; conforms to symbol. 
This syntax makes the •conformity-relation• appear to be 
symmetrical, but this is not the case as an examination of the 
strict syntax of the Report r R.8.3.2.1] will reveal. There one 
may see that the •tertiary• on the left is soft, whilst that on 
the right is not of any sort and therefore cannot be coerced. 
Moreover, the mode of the left •tertiary• must begin with 
•reference-to•. We may recall that the •destination• of an 
•assignation•, i.e., the cxc in ex := 3.14c, is soft, so that 
there is some similarity between •assignations• and •conformity-
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relations•. rhis is intentional, for the elaboration of a 
•conformity-relation• often results in an assignment. The right 
•unit• of an •:tssignation•, e.g., o3.14e in ex := 3.14a, 
however, is strong. Thus the right •unit• of an •assignation• is 
strongly coerced but the right •tertiary• of a •conformity­
relation• is not coerced. 

We may now ask what the difference is between ox:= 3.14o 
and ax ::= 3.14c. In the case of ox := 3.14o, an assignment is 
made. In the case of ex ::= 3.14o, an assignment is also made 
but not before checking that such an assignment is possible. 
Another difference is that the value of ox:= 3.14o, after its 
elaboration, is the name possessed by oxo, but the value of ox 

- 3.14o is a truth value, viz., .true•. 

Now consider ox := lo and ax ::= lo. In the case of ex := 
loan assignment of the real value, •1.0•, is made to axe after 
the widening of ole to a value of mode •re:tl•, but ax::= lc 
delivers the value •false. and no assignment takes place. Note 
that the ala in ox ::= 1o is not coerced and in particular 
cannot be widened to •real•. The reader may now protest that any 
simple minded compiler could determine, at comrile time, that 
the value of ox::= 3.14o is .true• and that the value of ox::= 
le is •false., thus the information yielded is trivial. We 
agree. However, the possibility of using united modes makes the 
•conformity-relation• an essential tool, as we shall soon 
discover. 

We have mentioned that the right •tertiary•, e.g., the ala 
in ox · ·= lo is not coerced. Therefore we may ask what will 
happen with ox::= yo and ex •• - ie. The semantics of the 
•conformity-relation• [R.8.3.2.2) now comes to the rescue. It 
tells us that, instead of returning the value •false• 
immediately, the right •tertiary•, e.g., the oyo in ox ::=yo is 
dereferenced as often as is necessary or possible. Thus ox::= 
yo will deliver •true. and ex ::= io will deliver •false• and in 
arrivinq at this, both the oyo and the oio are dereferenced 
once. 

boolean-conformity-relation •••••••••••••• 
I 

.. ---------------------+--------------------, .true• 
I I I 

soft-reference-to- conformity- real 
real-tertiary relator tertiary 

I ( 1) I I 
reference-to- 1 real-

real-base 1 denotaticn 
.1. 

ex .. -.. - 3. 14c 

0 ,-------, .. ---J...._-, 
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The only difference between the •conformity-relations• ex 
•• - 3.14e and ex :: 3.14c is that no assignment occurs in ex 
3.14c despite the fact that the value yielded by ex :: 3. 14c is 
atruea. A skeletal parse of the •conformity-relation• ~x ::= 
3.14c is shown in figure 7.3, where the only coercion involved 
(it does nothing} is shown at 1 and the value possessed by the 
•conformity-relation• at 2. 

we see therefore that the •conformity-relation• is a way of 
finding out whether an assignment is or is not possible. Without 
unitei modes, this would be of no value, since this information 
is known at compile time. It is only when united modes are used 
that the •conformity-relation• is useful. Thus the examples 
given above are merely for the purpose of illustrating the 
fundamentals of the •conformity-relation• and have no value in 
practical programming. 

7.4 Conformity and unions 

Suppose now that we are in the reach of the •declaration• 
C!!!!l:Q!!.(!!!!:, ~h~E} icc. Then the value of the •clause• c(int i; 
ic := "a" ; i :: ic}c is afalsea and the value of the •cii;se• 
c<!!!! i ; ic .- 1; i :: ic}c is atruea. Note that, without 
following the logic of the •program•, these values cannot be 
determined at compile time. How can one use these things? The 
reader who is irked by trivialities is advised to turn to the 
Report [R.11.1 10.5.2.1.b, 10.5.2.2. {, 10.5.3.1.b, 10.5.3.2.b, 
10.5.4.2.b] where there are many examples of •conformity­
relations• in action. For those not so brave, consider the 
following problem. 

We wish to write a •procedure•, say ctranslatec, which will 
accept either an integer or a character as its only parameter 
and will deliver either a character or an integer which is the 
environmental equivalent [R.10.1.j,k]. Thus suppose that in a 
qiven environment the integral equivalent of •a• is a193a, the 
•call• ~translate("a"}c should then possess an integral value 
a193a and the •call• ctranslate(193)o should possess the 
character value aaa. Its declaration then might be 

CEEQ~ translate= (~!!!.Q!!(i!!~, ~~~E) a} ~!!i.Q!!(l:!!!• ~!!~E) : 
beg!!! !!!! i, £haE c ; 
!f i ::=a!!!~!! I~EI i # R.10.1.k I 
else c ::=a ; abs c t R.10.1.j J !i ~!!QC 

In the bodv-of this procedure the •condition•, ci ::~ ac, 
determines whether the value delivered is cE~~! ic or c~~~ co. 
The value of the •conformity-relation• cc ::= ac is voided, 
since one knows that, if control reaches it, the value will be 
atrue•; however, its presence is essential because the 
•operator• c~Q~c is not defined for operands of united mode. 

7.5 Conformity extensions 

•Conformity-relations• occur in certain extensions, both 
for the convenience of the programmer and for the purpose of 
allowing more efficient implementation of certain constructions. 
Examples of these extensions occur in the Report [R.11.11.q,ah]. 
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We begin by explaining them in a simple way. 

The •conditional-clause• 
a{ a::= u I 1 1: b ::= u 

can be written 
21:c::-=ul:310)c 

a[ * a, b , c •• - u * ]a 
Its effect then is to test several conformities in succession, 
delivering as an integral value the index of the one which 
succeeds. If all of them fail then the result .o. is delivered. 
This, in itself, is useful, but its main purpose is for use as 
the •unitary-clause• which follows the acasea in a case clause 
fR.9.4.b,c]. In this particular situation--the two enclosing 
symbols c[*D and c*]o may be omitted. A case clause might 
therefore be 
o£~~~ a, b, c ::= u 1!!. f (a), g(b), h{c) 2.!:!1 error exit ~~~£D 

and its interpretation is the following: if cac conforms to anj 
be comes cue, then the value is of (a) c; otherwise, if obc 
conforms to and becomes DUD, then the v:~.lue is og {b) D; 
otherwise, if ceo conforms to and becomes cue, then the value is 
ch(c)o; otherwise the value is that of cerror exitc. Note that 
if both aa ::= uc and cb ::= uc possess the value atcue•, then 
it is undefined whether the value is of (a)o or og(b)o. EJamples 
of the use of this extension are in the Report [ R.11. 11.q,ah]. 
We could perhaps write the procedure of section 7.4 as follows: 

D££Qf translate= (!!.!!l2.!!C!.!!i• £Q~£)a)!!!l.!Q!l.(l!l.!, fh~£) 
f~~!!l. !!!.! i, fh~£ c ; 
case i, c : : .= a i!l. £_g.E_E i, ~B~ c ~~~£ 
en.Qo 

though little would be gained in this simple example. 

The description of the extensions [R.9.4.e,f], however, is 
forbidding and it is perhaps worth while taking a little time to 
discover why it must appear in this way. Suppose we have the 
conformity case clause o(x, x ::= u 1 9, 8 I error )o. It is 
clear that if it is interpreted as the equivalent of a ( x ··= u 
1 9 1: x : := u 1 8 1 error ) o, then the value •8• can never be 
delivered. This is unfortunate, for the implementer of the 
language may find it convenient and mace efficient to make the 
conformity test in an order different from that given. It 
therefore should be made impossible for the programmer to 
determine from the Report the order in which the conformity 
tests are made. This can be done by describing the extension by 
means of parallel processing. It is worth our while to examine 
this m~re closely. 

According to the Report [ R.9.4.e], the •clause• o(* x, x 
::-= u *]o, in the reach of creal x, Y!l.iQ.!!(!.!l.!• _Eg~1J uo, is 
equivalent to the following 

o(!!l.i i, ~~~~ s = /1 ; !!!l.lQ!l.(iTii• £!~!) k = u ; 
.E~£ ( ( x : : = k 1 .QQ~!l. s ; i : = 1 ; m ) , 

( x : : = k 1 g_Q~!l. s ; i : = 2 ; m) ) ; 0 • m : i ) o 
The •declaration• aunion (int, real) k = uo ensures that 
elaboration Of DUO OCCUrS-OnCe only;-its value is then held 
eke. The •declaration• c~em~ s = /lo, declares a semaphore 
r R.10. 4] which will be used to control the elabor:a tion of 
two •clauses• in parallel. The semaphore is initialized to 
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value •1•. The two clauses beginning with ex • ·= lm, are, if 
this conformity is successful, followed by the •formula• cQQ~ll 
sc which drops the value of the semaphore to •0• and thus forms 
a barrier in the elaboration of whichever •clause• did not reach 
this action first. From this it is therefore not possible to 
predict whether the value •1• or •2• will be delivered. To the 
programmer, this is an unimportant matter, but the meticulous 
implementer will be pleased that there is no w~y in which he ~an 
be caught if he decides on one method of implementation rather 
than another. 

The reader should now examine the description of the 
extensions in the Report (R.9.4.e,f,g) where he will see that it 
is necessary in this description to have o( S 1 1)o rather than 
o;1c because the •operator• o;c as a •monadic-operator• with an 
integral right •operand• could be redefined by the programmer. 
The letter oSo stands for the •standard-prelude• and therefore 
returns to the original meaning of c/o as a •monadic-operator• 
which accepts an integer as right •operand• and delivers an 
equivalent semaphore. , , 

Review quest ions 

7.1 United declarers 

a) Is ounion(int, QQQ1) 
relation·?--

: =: an 

b) Is ounion(int, QQQ1) := boolc an •assignation•? 
c) what--Is- the value of--~Y~i2n<!nt. Q]lQll(QQQ1, 

union (bool, char, int)a? 
dJ Is-af1:n]Qni2nt£h~E-.-In!lo a •declarer•? 
e) Is D]QkQE(iE!r §!E]£!<in! a))c a •declarer•? 

7.2 Assignations with united declarers 

a) In the reach of a]llkQE (fh~E· Q2Q1) cbo, is 
•assignation•? 

ccb 

.~ -

•identity-

. - 1 o an 

b) In the reach of D]~ion(£~~1. ~QQ1) rho, is orb:= 1o an 
•assignation•? 

c) In the reach of O]QiOQ(£~~1, Q2Q1) rho, what is the mode of 
the value referred to by the name possessed by orba? 

d) Is cy!!io~ (Q,i!§, QI!~§) :=: n.Ho an •identity-relation•? 
e) In the reach of o]Q,!Q~(!n!, £h~£) icc, is oic := ic + 1o an 

•assignation•? 

7.3 conformity relations 

a) In the reach of oyQ!QE(£§~1. £h~f) reo, what is the value of 
ore :: reo? 

b) 
c) 

d) 

What is the value of ox ::= truec? 
In the reach of omooe b.r = union(bool, £§!!1); YEiQE(in!, Q£) 
ibr, br bra, what-Is-the vaiue-of-aibr ::=bra? 

In the-reach of oun!on (~221• in!> bio, is obi := i ::= 1o an 
•assignation•? 
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e) Is ex :: = x :: = xc a •conformi ty-re lati on•? 

7.4 Conformity and unions 

a) In the reach of cyE!2E(fh~f, ~221) cbc, is ex ::= cbo a 
•conformity-relation•? 

b) In the reach of ey!!_!on ([ ]E~~!_, !~~}) r1ro, is cr1r ::= 3.14c 
a •conformity-relation•? 

c) Can D.!!B!2E ([ J!!!!• [ ]E~! !!!!) c be contained in a proper 
•program•? 

d) In the reach of D.!!!!iQB(!nt, E~~!) ire, can cir := 1c possess 
a name referring to a real value? 

e) Declare a •procedure• which will accept an integer and 
deliver its square root, as an integer if it is integral 
and, otherwise, as a real value. 

7.5 Conformity extensions 

a) What is the value of c(x, i, b ::= 1 1 3, 4, 5() 1 6 )c? 
b) What is the value of c(£~~1. E~~1, E~~1 3.14 I 7, 8, 9 I 

10 ) c? 
c) Is c§~!~ p = 1c a •declaration•? 
d) Is Cf~§~ x, i, b :: u !E f(x), g(i) 2.!!! h ~§~fC a valid ALGOL 

68 ob-ject? 
e) In the reach of eunion(char, int, ~221) cibc is ccib : := 

§!!Qc a •conformitv=relation;?-
f) Is ex : := gg_,tQ kc a •conformity-relation•? 

8 Formulas and 

8. 1 Formulas 

In sectic 
simplified syn 

formula : o~ 
monadic Of 

This is gooa 
help to explai 

is elaborated 
question then 
to determine t 
the syntax of 

PRIORITY for 
PRIORITY c 

PRIORITY ope 
PRIORITY f 

priority NIN 
monadic oper 
monadic form 

[simplified 
productions of 
•priority-one­
Thus, •priorit 
is evident t 
as a counter 
priority not 
and the right 
its associated 
shorten the 

r-----
p6-operand 

I 
I 
I 
I 

secondary 
~ 

ex 

way, to •p1, F 
obtain, from t 
rules: 

p1 formula 
p1 operand 
p2 formula 
p2 operand 

p9 formula 



•n 

. ? 
.1. on • . 

:l cbc, is ox::= cbo a 

1rc, is or1r ::= 3.14o 

contained in a pr o per 

can air := lo possess 

accept an 
•r if it 

integer and 
is integral 

3 , 4, s() I 6 ) o? 
~1 . . 3 • 1 4 I 7 I 8 I 9 I 

h ~g£c a valid ALGOL 

cibc is ccib .. -
on•? 

An ALGOL 68 Companion 93 

8 Formulas and operators 

8.1 Formulas 

In section 3.11 •formulas• were discussed and the following 
simplified syntax was presented: 

formula : operand, dyadic operator, operand ; 
monadic operator, operand. 

This is good enough as a first approximation but it does not 
help to explain that a •formula• such as 

D X + y * ZO 
is elaborated in the order suggested by ox + (Y * z) o. ·rhe 
question then is how the priority of the •operators• may be used 
to determine the order of elaboration. A closer approximation to 
the syntax of •formula• (still ignoring modes and coercion) is 

PRIORITY formula : PRIORirY operand, 
PRIORITY operator, PRIORITY plus one operand. 

PRIORITY operand : 
PRIORITY formula ; PRIORITY plus one operand. 

priority NINE plus one operand : monadic operand. 
monadic operand : monadic formula ; secondary. 
monadic formula : monadic operator, monadic oferand. 

[simplified from R.8.4.1.b,d,e,f,g]. Here the terminal 
productions of •PRIORITY• are fR.1.2.4.a, ••• ,n] •priority-one•, 
•priority-one-plus-one•, •priority-one-plus-one-plus-one•, etc. 
Thus, •priority-NINE• has the meaning that one might expect. It 
is evident that the metanotion, •PRIORirY•, is being used here 
as a counter to ensure that the left •operand• must have 
priority not less than that of its associated •dyadic-operator• 
and the right •operand• must have priority grater than that of 
its associated •dyadic-operator•. We shall find it convenient to 
shorten the terminal productions of •PRIORITY•, in an obvious 

p6-formula 
I 

r-------------T-----------~-----------~ 
p6-operand p6-operator p7-operand 

I I I 
I I r---------t---------, 
1 1 p7-operand p7-operator p8-operand 
I I I I I 

secondary 1 secondary 1 secondary 
~ ~ ~ ~ ~ 

ox + y * zc 

Fig .8. 1. a 

way, to •pl, p2, p3, ••• •. Using this shorthand notation, we 
obtain, from the first three rules above, the following nineteen 
rules: 

p1 formula 
pl operand 
p2 formula 
p2 operand 

p9 formula 

pl 
p1 
p2 
p2 

p9 

operand, 
formula ; 
operand, 
formula ; 

operand, 

pl opera tor, p2 operand. 
p2 operand. 

p2 opera tor, p3 operand. 
p3 operand. 

p9 opera tor, plO operand. 
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p9 operand : p9 formula ; p10 operand. 
p10 operand : monadic operand. 

We may now present, in figure B.1.a, a simplified parse of the 
•formula• ex + y * ze, remembering that e+o is a •p6-operator• 
and e*o is a •p7-operator•. 

Because a •dyadic-operator• requires that 
•operand• be of the same priority (or higher) and that 
•operand• should be of higher priority, the •formula• 

DX + y + ZD 

is elaborated as if it were c(x + y) + zo, for the only 
parse is that sketched in figure 8.1.b. 

p6- formula 
I 

its left 
its right 

possible 

r--------------.J..---------r------------, 
p6-operand p6-opera tor: p7-opera nd 

I I I 
p6-formula I I 

I I I 
r----------.J..T-----------, I I 

p6-operand p6-operator p7-operand 1 1 
I I I I I 

secondary 1 secondary 1 secondary 
.J.. 

ex + 

..1 

y 

Fig.8.1.b 

.J.. 

+ 
.J.. 
ZD 

It is important to observe that, in a •formula• containing 
several •operators•, the •operands• of each •operator• are 
determined solely by the priorities of the •operators• and do 
not depend in any way upon the modes of the •operands•. Thus, 
assuming that the •operator• cgje has priority •1•, og_6o has 
priority •2• and so on, we know that the •formula• 

ch ~1 i g£ j d5 k g~ 1 ~1 m g~ no 
must be elaborated in the order suggested by 

e(h .Ql i) ~£ ((j .92 k) ~~ (1 .91 (m ~~ n)))o 
without any knowledge of the modes of ch, i, j, k, 
one. The compiler writer appreciates the necessity for 
independence and the programmer gains because of the 
clarity in the meaning of •formulas•. 

8.2 Priority declarations 

1, me :.n:l 
this mode 
resulting 

•Priority-declarations• were mentioned, in passing, in 
section 3. 11. An example of a •priority-declaration• is 

which is 
prel uJe • 
is shown 
shorthand 
token•. 

D££i2Ei!1 + = 6o , 
indeed one of the •declarations• in the •standard­
[R.10.2.0.a]. A parse of this particular •declaration• 
in figure 8.2, where •6-token• is used here as 
for •one-plus-one-plus-one-plus-one-plus-one-plus-one-

The syntax of •priority-declaration• is 
•priority-declaration : priority symbol, 

priority 
fR.7.3.1.a], 
[R.1.2.4.f] i 

r---· 

I 
priority-sy 

__ _J_ __ _ 

DEEiQEH1 

• token • on th • 
on the left. 

The fir:: 
section 8. 1 a l 

but all of the 
extension [ R.' 

DE! 
.Q~ 

Observe tha1 
indica tions•, 
only those 
representatioi 
implementatio1 
will permit r:t 
such char:actt 
al rea:ly used c 

8.3 Operation 

Among tt 
declarations• 
declarationB• 
primitive for:n 

A simpli1 
operation dE 

caption, E 
caption : Of 

rH.7.5.1.a,b], 
to convey infc 
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about the pric 
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language) is 

( (I'€!! 
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priority NUMBER indication, equals symbol, NUMBER token.• , 
rR.7.3.1.a], where we may observe that the metanotion •NUMBER• 
[R.1.2.4.f] is used as a counter to ensure that the value of the 

priority-declaration 
I 

r----------------r----------..1..-----r----------------, 
I I I I 

priority-symbol p6-indication equals-symbol 6-token 
___ J.. ___ _ 

J.. 

+ 6c 

Fiq.8.2 

•token• on the right is the priority of the •dyadic-indication• 
on the left. 

The first two •dyadic-indications• [R.4.2.1.d) used in 
section 8.1 above might have been declared in 

o~~!Qfl!I Qj = l, £~!Qii1I Ql = 2o 
but all of them might be declared more compactly by using an 
extension [R.9.2.c) which allows elision of Dff!2~!!Yos, as in 

D£Ii2Ii1Y ~1 = 1, ~l = 2, ~1 = 3, 1~ = 4, 
as = 5, d6 = 6, d7 = 7, d8 = 8, d9 = 9a 

Observe that the -programmer may--choose--his own •dyadic­
indications•, like odlo and od2o and is not constrained to use 
only those which-- appear--in the Report. The particular 
representations permitted will be determined by the 
implementation, but it is expected that most implementations 
will permit representations like o~lc and cgJo together with 
such characters as c?a and c!o, if available, and which are not 
already used as representations of some symbols (R.1.1.5.b). 

8.3 Operation declarations 

Among the well known programming languages 
declarations• may be unique to ALGOl 68. Certainly 
declarations• are rare. The latter exist, perhaps 
primitive form, in APL where all priorities are the 

•pri ori t y­
•operat ion­
in a more 

same. 

A simplified syntax of •operation-declaration• is 
operation declaration : 

caption, equals symbol, actual parameter. 
caption : operation symbol, virtual plan, operator. 

r H.7.5. l.a,b), but the strict syntax uses the metanotion •PRAM• 
to convey information about the number of and the modes of the 
•parameters• and the metanotion •ADIC• to convey information 
about the priority of the •operator• and whether it is monadic 
or dyadic. 

An example of an •operation-declaration• (in the strict 
language) is 

DQE (£~~1. £~~!) f~~1 
((re~± a, f~~1 b) I~~! (a> 

and a simple parse is shown in figure 
language it may be written 

.!!!~.! = 
b 1 a 1 b ))o 
8.3. In the extende1 
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CQ£ .!!!~.! = (J;g_~J a, b) f~~! ( a > b I a I b ) c , 
for if the •actual-parameter• is a •routine-dentation•, then the 
•plan• may be elided and the •routine-denotation• may be 

operation-declaration 
I 

r------------r-~---------------, 
caption equals- actual-

1 symbol parameter 
r----------.L--r-------, I I 

operation- virtual- oper-1 I 
symbol plan ator: I I 

I I I I I 
.J._ _ ________ .J._____ -L- L ----------------.L---------------

CQE (~g_~!, ~~~1)E~~! ~~.! = (f~~! a,b)~~~!: (a> b I a I b)c 

Fig.8.3 

unpacked [R.9.2.e,d]. Before going further we 
that this •declaration• can only occur in 
•priority-declaration• like C£fi2fi~Y ~~! = 7c. 

should remember 
the reach of a 

In the reach of the •declarations• given above, we may have 
a •formula• like ex max y + 3.14c. Since the priority of the 
standard •operator•-c+o is six, we should expect this •formula• 
to be elaborated in the order suggested by n (x !!!~! y) + 3.14o. 
If the •priority-declaration• had been OEfiQfi!Y ~~.! = 5o 
instead, then the •formula• would be elaborated as if it were ox 
!!!~! (y + 3. 14) c. 

The •actual-parameter• need not necessarily be a •routine­
denotation•. For example, 

oQ£ (~!firrg, iEt> 1~! ~1 = string into . 
is an •operation-declaration• in which the •actual-parameter• 1s 
an •ijentifier•. The •operator• o~jc is then made to possess the 
same routine as that possessed by cstring into [R.10.5.2.2.c ]. 
In the reach of this •declaration• the •formula• o"+123" §! 10c 
will possess the same value as that possessed by the •call• 
ostrinq int ("+ 123", 10) c. Observe that 

DQ£ §! = string in t o 
is not an •operation-declaration• because cstring into is not a 
•routine-denotation• so the •plan• o (§!~!.!!9• i!!!) irrto cannot be 
elided. 

It is not necessary that an •operation• should deliver a 
value, but if it does not, then a •formula• containing such an 
•operator• cannot be used as an •operand•. Thus one loses some 
of the advantages of •operators•, except perhaps for the benefit 
of compactness of expression. 

An example is 
CQ£ irr!g_~~h~E9~ = (f~! ~g_~! a, b) 

( a : "I: b 1 rg_~..! t = a ; a : = b ; b : = t) o , 
whose •operator•, ojg~g_f~h~]g~o, could be used in the •formula• 
ex 1rrtg_f£hang~ yc. The same effect would be obtained by means of 
the •identity-declaration• 

llj!J 
( d : i 

whose •identi 1 
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• dec l a r: at ions • < 
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of algorithms 
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although LISP lc 
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[R.7.5.2]. In tl 
OQI! _!!!~_! 

the •operator:• 1 

• (!~~! a = ~~j 
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• 

o~fQ~ interchange = (f~f £~~! ~?) 
, 

•call• 
( a : ~ : b 1 £~~1 t = a ; a : = b t/ b : -= t) n 

whose •identifier• could then be used in the 
ointerchange(x, y) o. One might observe that the •actua 1-

i n both parameter• is the same •routine-denotation• 
•declarations• above. 

•Operation-declarations• may 
of algorithms since •formulas• 
priorities may be built to do 
• formula• like 

therefore allow a compactness 
using •operators• of several 

any job we may require. A 

ox ~~! y ~~! 0. 1o 
is s~metimes a more pleasing expression of thought than a 
nesting of •calls• like 

omax(max(x, y), 0.1)o 
although LISP lovers may not agree. 

8.4 Elaboration of operation declarations 

An •operation-declaration• causes its •operator• to possess 
that routine which is possessed by its •actual-parameter• 
[ R. 7. 5. 2 ]. In the elaboration of 

CQ£ ~~! = (f~~J a, b) £~~! : ( a > b I a I b ) c 
the •operator• o~~!c is made to possess the routine 

• ( !~~1 a -= ~~.!.!:?, E~~l b = ~~!..!:? ; !~~1 : ( a > b I a I b ) ) • • 
This is, of course, already the value possessed by the •routine­
denotation• which is the •actual-parameter• on the right. The 
elaboration of an •operation-declaration• is thus similar to 
that of the •identity-declaration•, particularly that in which 
the •actual-parameter• possesses a routine with one cr two 
• parameters•. 

8.5 Dyadic indications and operators 

Although the same occurrence of an external object may be a 
representation of both a •dyadic-indication• and an •operator•, 
the identification of the object, as it plays each role, is a 
distinct process. An example may help to illustrate this. In the 
•closed-clause• 

a( .I:?I!.2E!!I ~~! = 7 : 
¢1¢ 

X := X ~~! y + 3.14 ) 
¢3¢c 

(a>blalb) 

there are three occurrences of the object o~E!o· The first 
occurrence is the defining occurrence of a •dyadic-indication• 
fR.4.2.1.e, 4.2.2.a); the second occurrence is an appliej 
occurrence of omaxo as a •dyadic-indication• and its defining 
occurrence as -an •operator• [ R.4.3. 1.b, 4.3.2.a); the third 
occurrence of omaxo is an applied occurrence of a •dyadic­
indication• and-an applied occurrence of an •operator•. Thus, in 
each of the last two occurrences, the object o~E!o represents 
two notions, both of which are involved in the identification 
process. Since an applied occurence must always identify a 
defining occurren~e [R.4 . 4.1.b], the last occurrence of o~~!D 
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identifies two defining occurences, i.e., the first as a 
•dyadic-indication• and the second as an •operator•. In figure 
8.5 we sketch the parse of each of the three occurrences of 
D~!!D and indicate by "<===" how the identification occurs. 

priocity­
declaration 

I 
r-------+------~, 
I I 
I dyadic 
I indication <--------
I I 

operation­
declaration 

I 
r----~--T-, 

I I 
1 operator <==== 
I I 
1 dyadic 
1 indication <==== 
I I 

.J._ __.J. 

Fig.8.5 

formula 
I 

r----+-----, 
I 

operator 
I 

dyadic 
indication 

I 
__.J._ 

ox :!!!!! yo 

It is thus helpful to remember that an object like oJ!!~,!o, 
except in a •priority-declaration•, must be considered first as 
a •d yadic-i ndication • (carrying the in for mat ion about priority) 
and second as an •operator• (possessing an operation - a 
routine). As a •dyadic-indication• it may identify only one 
defining occurrence [R.4.2.2, 4.4.2.b], but as an •operator• it 
may, at different applied occurrences, identify mora than one 
defining occurrence [R.4.1.2]. One need only consider the 
•formulas• o3. 14 + 4.25o and o123 + 456a to realise that the 
standard •operator• a+o, in the first •formula•, must be that 
which adds two real values rR.10.2.3.i] and in the second it is 
that which adds two integral values [R.10.2.4.i]. This 
"overloading" of •opecators• (i.e., allowing them to have moce 
than one meaning) has been traditional both in mathematics and 
in programming languages, so that it should not be difficult for 
us to remember that in ALGOL 68 any •operator• may have a 
meaning which depends upon the modes of its •operands•. 
Moreover, the programmer now has the power to overload operators 
at will. 

8.6 Identification of dyadic indications 

The identification of •dyadic-indications•, like that of 
•identifiers•, is a simple process. For each applied occurrence 
one must search in the current •range• for a defining 
occurrence. If it is not found, then one searches in the next 
outer •range• [R.4.2.2.b]. rhe process is then repeated. If a 
•particular-program• contains no •priority-declarations•, then 
the defining occurrence of any •dyadic-indications• will be 
found in the •standard-prelude• (or perhaps a •library­
prelude•). Since •dyadic-indications•, again like •identifiers•, 
are subject to protection [B.6.0.2.d, 6.1.2.a], i.e., to 
systematic replacement in a •closed-clause• in order to avoid 
confusion with the same object used elsewhere, it follows that 
the occurrence of, say 
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in s3me •range• w 
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inaccessible. A sma 
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in s3me •range• will mean that all operations possessed 
•operator• c+c, in the next outer •rflnge•, will 
inaccessible. A small example may help to make this point 
In the object 

o{ E~i2£!!I .fll~! = 7 
¢111! 

2E ill~!~ {~~~1 a, b)fg~1 
¢2¢ 

X : = 1 • 2 3 _!!!~! J ; 
¢3¢ 

) 0 

Efi2~!.!I .!!!~! = 5 
¢4¢ 

X : ~ 2. 3 4 _!!!~! J ) 
rt5¢ 

{a>blalb) 

99 

by the 
become 
clear. 

the fifth occurrence of D!~!C identifies the fourth occurren~e. 
Moreover, due to protection of the inner •closed-clause•, both 
of these occurrences are systematically changed into some other 
•indicant• which is not used elsewhere. Consequently, the last 
occurrence of D!~!D is that of an •operator• with no defininq 
occurrence. Because of a context condition [ R.4.4.1. b), this 
could not be contained in a proper •program•. This means that 
the changing of priorities of the standard •operators• cannot be 
undertaken lightly. Perhaps it is just as well. 

8.7 Identification of operators 

The identifi::ation of •operators• is not as simple. It is 
not sufficient for the •symbol• to match that which occurs in an 
•operation-declaration• since, as we have said b e fore, one same 
•dyadic-indication•, when considered as an •operator• may, at 
different occurrences, identify more than on e defining 
occurrence. The additional requirements to be satisfied are as 
follows. The mode of the left •operand• must be firmly 
coerceable to the mode of the first •formal-parameter• in the 
•operation-declaration• an~ the mode of the right •operand• must 
be firmly coerceable to the mode of the second •formal­
parameter•; otherwise, the search for a defining occurrence 
proceeds to the other •operation-declarations• in the s~me 
•range•, or, as before, in successive outer •ranges•. We shall 
illustrate this with a simple example. 

0 ¢1¢ { E~!Q.£!.!1 2 = 8 ; 
¢2¢ QE Q = ~~A1 a, b)~~~1: 3.14 ; 
¢3¢ { QE Q = {~~!!a, !~!b)£~!!: 3.15 
¢4¢ { QE .2 = <!~22! a, b) £~!1 3.16 ; 
¢5¢ 2.3 2 X)))D 

The question to be answered here is, which defining occurren::e 
is identified by the •operator• c2o in the •formula• o2.3 .2 xc 
in line 5. One first searches the •range• in which that 
•formula• occurs. There is an •operation-declaration•, on line 4 
in this •range•, using the same •dyadic-indication• OQD. This is 
the first requirement. However, since the mode of the •operand• 
o2.3o cannot be firmly coerced to •boolean•, this attempted 
identification of •operators• fails and we must search in the 
next outer •range•. This next outer •range• also contains an 
•operation-declaration•, in line 3, but again the identification 
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fails since the mode of oxo cannot be firmly coerced to 
•integral•. (Note that it is sufficient to have the failure 
occur in only one •operand•.) We must now search in the next 
outer •range•, which contains yet another •operation­
declaration•, in line 2, using the same •dyadic-indication•. 
This time the identification succeeds since the mode of both 
o2.3c and oxo can be firmly coerced to •real•. The value yielded 
by the •formula• is therefore •3.14•. 

8.8 Elaboration of formulas 

In section 5.1 we discussed the elaboration of a •call•. 
The elaboration of a •formula• is similar. As an example, 
consider . the •clause• 

o¢1¢ EEi2E!~1 max = 7 ; 
¢2¢ QE ~~! = (real a, b) £~~! 
¢3¢ ( d > b I a I b ) 
¢4¢ x := 3.14 !!~ y )o 

Here the •operator• cmaxc, in line 2, possesses the routine 
• (£~~.! a = ~~!£, £g~];-b = sk!£ ; !g!.! : ( a > b I a 1 b ) ) • • 

The elaboration of the •formula•, in line 4, then has the 
following effect. In a copy of the routine possessed by D!~!c, 
the two a~~!£oS are replaced by the •operands• of the •formula•. 
The resulting object 

0(£~!.! a = 3.14, rg!.! b = y 
which is a •closed-clause•, 
elaborated. Its value is then 
is therefore nothing new to 
• formulas•. 

; !~!! : ( a > b 1 a 1 b ) ) c , 
replaces the •formula• and 1s 
the value of the •formula•. There 
tell about the elaboration of 

Since it seems that each operation in a •formula• involves 
a sequence of actions like those in the elaboration of a •call•, 
it may be thought that the execution of ALGOL 68 programs will 
be necessarily slow. This need not be the case, for the 
implementer will undoubtedly produce in-line code for the 
translation of a •formula• like ex + yc (perhaps only one 
machine instruction). Provided that the effect is the same, he 
is free to produce any machine instructions for doing the job 
(see the note after 10.b Step 12 in the Report). 

8.9 Monadic operators 

The most significant fact concerninq •monadic-operators• is 
that they are always of priority ten. There are no •priority­
declarations• for •monadic-operators•. Because of this, monadic 
operations are always performed first. This is a simple rule ani 
is easy to remember. It means that the value of c-1 ** 2c is •1• 
and not •-1•, contrary to its meaning in ALGOL 60 and in 
FORTRAN. The reason for making this choice has been explained 
earlier in section 3.11. 

Because of the syntax 
monadic formula : monadic operator ; monadic operand. 
monadic operand : monadic formula ; secondary. 

[ R.8.4.1.f,g ], the elaboration of a •formula• containing a 
sequence of •monadic-operators• proceeds from right to left. 

Thus the •formula• 
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Thus the •formula• 
chin round - xc 

is elaborated in the order-sugqested by CQiE ( ~2grr~ (- X)) c. 
A sketch of the parse of this •formula• is shown in figure B.9. 

formula 
I 

r--------L---------, 
operator operand 

I I 
I r--------~--------, 
1 operator operand 
I I I 
I I r------~-----, 
I 1 operator orerand 

__ .J.. __ 

Fig.8.9 

~ ~ 

XD 

The identification of •monadic-operators• proceeds as tor 
the •dyadic-operators•, the only difference being that there is 
only one •operand• which must be checked aqainst the only 
•formal-parameter• in the mona<lic •oper-ation-declaration•. As 
for •dyadic-operators•, the mode of the •operand• must be firmly 
coerceable to that of the •formal-parameter•. An example is 

c¢1¢ ( QE ~ = (Q.QQ.!: a) lrr! : (a I 100 1 0 ) 
t 2¢ ( QE ~ = (i!!t a l irr! : 2 o o 
¢3¢ ~ .tru~ ))o 

in which the •operator• o~o , in line 3, identifies the 
•operator• in line 1, since the value possessed by o!I~~o cannot 
be firmly coerced to a value of mode •integral•. The value of 
the •formula• o~ !I~~o is therefore •100a. 

8.10 Related modes 

Two modes are "related" if each of them can be firmly 
coerced from one same mode fR4.4.3.b]. An example is the pair of 
modes specified by af~f I~~l:o and DEIQf £~~.J.:o. These are related 
because both can be firmly coerced from the mode specified by 
C£~! IQ~ja. (We shall find it convenient here to shorten the 
phrase "the mode specified by D!!!D" to "the mode a~a", or even to 
11 D!!!_o 11

.) Thus CI~! I~~jo may be coerced to or~! f~~jo, by the 
empty coercion, and to O£IQf fg~.J.:c, by dereferencing and then 
procej uri nq. One reason for defining this relationship bet ween 
modes is to exclude some dubious unions from proper •pro~rams• 
r R. 4. 4. 3. d l· Consider, for- example, the •declara tion • 

a~!!!Qrr(EIQf r~~l:. I~! I~21> pr := xo 
Since axe is in a strong position it may be sutjected to 
dereferencinq, procedurinq and then uniting, whereupon the 
assignment can oc~ur. On the other hand the assignment can also 
occur with an immediate uniting of oxo. There is thus an 
ambiguity. For this reason, unions of related modes are excluded 
from proper •programs•. 

Another reason, which has to ao with •operators•, mdy 
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0-­
Q 

become clea~ by examining th J / following: 
a(QE ~ = (E~Qf ~~~~ !~! : 0 ; 

2E ~ = (~~f £~~1( !~! : 1 ; 
x : = 3. 14 ; i : = m x) a 

What is the value assigned to cio? Is it .o. o~ •1•? Since oxo 
may be fi~mly coe~ced both to the mode D£~! ~~~1o and to the 
mode DE£2f ~&~±c. it is clear that the~e are two defining 
occur~ences of the •operator• o~c in the same ~ange. This 
possibility must also be excluded f~om prope~ •p~og~ams• 
fR.4.4.3.d]. 

A first attempt to achieve this exclusion might be by 
forbidding the occurrence of two •ope~ation-declarations•, in 
the same ·~ange•. if thei~ corresponding •operands• a~e of 
~elated modes. However, this is not enough as the following 
example shows: 

o ( 2E + = ([ )~gf £~~.! a, b) £g~1 : 0.0 
2E + = (()~g~1 a, b) !:~~1: 1.0 
x1 := (x, y) + (y, x) )c 

In this example the modes o[ ]£~~±o and c[ ]£~! f~~1a are not 
~elated, nevertheless we have two defining occu~rences of the 
same ope~ator o+o, as used in the •formula• in the last line. It 
is fo~ this ~eason that the concept of "loosely ~elated" is 
developed in the Repo~t. Fa~ most programme~s and most 
implemente~s. this concept is sufficient to exclude multiple 
definitions of •ope~ators•. It has been shown that the~e are 
certain pathologi=al cases which can still slip th~ough into 
prope~ •p~og~ams•. Fa~ a discussion of these the ~eade~ is 
referred to a p~per by W~ssner and the discussion following it 
f W l· A new wo~ding of the context condition [ R. 4. 4. 3. b) is thus 
likely to appear in the revised Report. 

8.11 Peano curves 

In the following example we assume that there is a plotting 
device and a •library-p~elude• ( fo~ plotting) containing 
•decla~ations• of the •identifie ~s· ax, y, plato and cmoveo. 
Both axe and eye 3re ·~eal-va~iable s•, the two coordinates of 
the plot pen. The •p~ocedure• oploto first lowers the pen and 
then plots a straight line from its cu~~ent fOsition to the 
position whose coordinates a~e c(x, y)o. The •procedu~e· omoveo 
fi~st ~aises the pen and then moves it to the position o (x, y) c. 

In mathematics it is known that a uniformly convergent 
sequence of continuous cu~ves (e.g., polygonal lines) will 
converge to a continuous curve. The particular example we have 
in mind is a sequence which defines a continuous cu~ve passing 
th~ough eve~y point of a square. It helps in proving that the 
points of a squa~e a~e in one-to-one correspondence with the 
points of a line interval. These are known as the Peano curves. 
The plottinq of the app~oximants is an interesting exercise 
(provided that one has plenty of computing money) and the 
resulting fiqures are aesthetically pleasing. 

Suppose that one begins with a square of side cdc. The 
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square. To obtain the second approximant (n = 1), one divides 
the original square into four squares each of side cd 1 2o. The 
solution for the case n = 0 is then applied to each of the four 
small squares. The four plots so obtained are then joinei 

r--------------------------, 
I 
I 
I 
I •------~------• 
I I 
I I 
I I 
I ~ 
I I 
I I 
I I 
I •------~------• 
I 
I 
I 
L-------------------------~ 
< - - - - - d - - - - - - > 

Fig.8.11.a 

by three lines of length cd 1 2 ** lc in 
then N and then w. The resulting plot is 
The process is re~ursive, but perhaps we 
more step. The next approximant (n 
8.11.b, in which the method is to apply 

r--------------------------, 

. ····~···------· 

·------· ·------· 
• 

• ·------· ·------· 

. ····~···------· 

L--------------------------J 
Fig.8.11.b 

N 

I 
I 

W--+--E 
I 
I 
s 

the directions first E, 
shown in figure 8.11.a. 
should follow it one 
= 2) is shown in figure 
the solution for the 

N 

I 
I 

W--t--E 
I 
I 
s 

case n to the four quarters, but scaled down ann re­
oriented. rhese four plots dre again joined by straight lines of 
length cd 1 2 ** 2c and in the same directions as before, i. e ., 
first E, then N and then W. 
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To plot these approximants we consider some orientations of 
the case n 1. A moment of thought will convince us that we 
need only four orientations and these are shown in figure 
8.11.c, together with a pair of truth values (the first relatei 
to rotation about the NE diagonal and the second related to 
rotation about the NW diagonal) and the direction of the second 

..-----------1 .--------- - - 1 ,.-----------1 ,.------------, 
I I I I I I I 
I ·-----. I I ·--~---. I I • • I I ·------· 
I I I I I I I I I 
I 4 I I I I I I v 
I I I I I I I I I 
I ·-----· I I • • I I ·---(--• I I ·------· 
I I I I I I I l_ __________ __J l_ _____ __ _ _ _ .J l_ _________ J 

L----------.J 

(true,true) N (false,true) E (true,false) W (false, false) s 

Fig .8.11. c 

of the three straight lines, eit her of which will determine one 
of the four orientations. In the reach of DQ.2.2! p, qc, the 
•formula• op * qo _plots an ap proximant with the orientation o(p, 
q) o. and the •formula• cp + go plots a straight line of the 
required length and with orientation c(p, q)o. 

The program< 1) to plot an approximant follows. It first 
reads the length cdc of the side of the square and the degree 
one of the approximant. The first step is to calculate the 
length of the line segments required and then to move the pen to 
the starting position. The plot is then driven by the •formula• 
c!;!!:!~ * !:f:.!:!~D. 

¢Peano curve approximant¢ 0 11£1.!!2 
QE + 

(( p 
<!2.2.2! p, g) 

= g I y I X 

(.Qoo! p, g) 

¢this plots a straight line of length d¢ 
+:= ( q I d I -d ) : plot ) 

* = ¢a recursive operation¢ 
( n > 0 
I 

) 

n -: = 1 ; -.p * q ; -. p + q 
p + -. q ; p * -.q ; n + : = 1 

!£~! d ¢the side of the square¢, 

p *q;p+q 

.!!l!: n ¢the degree of the approximant¢ 
start here: read((d, n)) ; 
d ;:= 2 ** n ¢length of connecting segments¢ 
x := y := d 1 2 ; move ¢to the starting point¢ 
¢now plot it¢ (!!!:!~ * !:.£!:!£) 
~!l~tl 

<1> From an algorithm of A. van Wijngaarden. 

---------~----- - -
----------- -
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QE ~Q~!l = (~Q!; al, 
( i!l.!: a : = a 1 ; 

((a-:=b)> 
I a Q~B 2 ; I 

2E !:!£ = <!n! a 1 , t 
( .!.!l!: a : = a 1 ; 

((a-:= b) ) 
I a !:!.E 1 ; a g 

i!l!: n 
start here 
~!lQD 

readi 

8.1 Formulas 

a) Is ex := yc a •fa 
b) Is ox +:= yo a •f 
c) What is the ordet 

ex + - y - - - a 
d) How many priority 
e) Is ex :=: yc a •f 
f) W bat is th e value 

8.2 Priority dec 

< 1 > D. 0. Shklarsky, 
Problem Book, Freema 

< 2 > This algorithm 
to W. L. van der Poel. 
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8.12 Chinese rings 

The next example is a solution to the puzzle of the Chinese 
rings. The puzzle may be stated as follows. There are one rings 
with an elongated D shaped rod passing through them; the rings 
are attached, by wires through the D shaped rod, to a plate; 
this is done in such a manner that, if the first em - 2c rings 
have been removed, then the nmcth ring may be removed {or 
replaced) but not the em-1oth rinq. The problem is to remove all 
the rings. The solution is by induction <t>. Removal of rings 1 
and 2 is done in the order "remove 2, remove 1". Assuming that 
we know how to remove (and therefore to replace) less than orne 
rings, then all cme rings are removed as follows: "remove m-2 
rings, remove ring m, replace m-2 rings, remove m-1 rings". 

In the 
removes ek -
rings. The 
removing all 

following program< 2 > the •formula• ek QQ~~ ic 
ic rings. The •formula• ek QE ic replaces ek ie 
•formula• en QQ~~ Oe then drives the algorithm by 
the one rings. 

DQ~SI.!!! 
QE ~Q~!! = (i~:!:. a 1, b) 

( .!!!:!:. a : = a 1 ; 
(( a-:= b) > 0 
1 a QQ.:!n 2; print(("remove", a)) 

QE .!!E = <!.n:!:. a 1, b) 
( .!!!:!:. a : = a 1 ; 

({a-:=b)>O 

a l:!E 2 

1 a QE 1 ; a ~OW.!! 2 ; print(("replace11
, a)) 

i!!.t n 
start here 
~!!QIJ 

read (n) ; n QQ~~ 0 

Review questions 

8.1 Formulas 

a) Is ex : = yo a •formula•? 
b) Is ex +:= yc a •formula• 
c) What is the order of elaboration of 

ex + - 1 - - - ~!:!§ i QY~E 2c? 

1)) 

a .!!E 2 )) 

d) How many priority levels are there for •dyadic-operators•? 
e) Is ex :=: yo a •formula•? 
f) What is the value of c7 - 3 - 2c? 

8.2 Priority declarations 

< 1 > D.O. Shklarsky, N. N. Chentzov, I. 1'1. Yaglom, The USSR Olympiad 
Problem Book, Freeman & Co. 196 2, pp 80-84. 

<z> This algorithm is due to Sharon Dyck and in its final form 
to W.L.van der Poel. 
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a) Is Df?.£i2£i!:1 :=: = 1c a •priority-declaration•? 
b) Is DE.fioritl +:= = Oc a •priority-declaration•? 
c) Is D££i2£i!:1 !!! = 10c a •priority-declaration•? 
d) Is D£fi2£i!:1 ? = 5c a •priority-declaration•? 
e) Is Df?.£i2£i!:.J ? . ' I = 6c a •priority-declaration•? 

8.3 Operation declarations 

a) Is D2E. :=: = (~~l £~~1 a, b) 
dec lara ti on•? 

a = be an •operation-

b) Is DQE.!. = (: !:~!!~)c an •operation-declaration•? 
c) Is D2E. * = (£~~1 a) !~~1 exp{a)c an 

declaration•? 
•operation-

d) Is DQE. Q£ = (~~f £~~1 X, y) £~! £~~1 
y )can •operation-declaration•? 

random > • 5 X 

e) Declare an •operator• ccreatec so that ef create 
same value as ccreate(f,-n)~-fR.10.5. 1.2.c):-----

na has the 

8.4 Elaboration of operation declarations 

a) What is the value possessed by e2c in the reach of c2~ 2 = 
(£~21 a) int : ~2.!m£ ac? 

b) Is DQ£ (E.~~1) ~~21 Q = randomc an •operation-declaration•? 
c) What is the value of the •formula• c 11 +123 11 §i ( 11 +1000 11 §! 

d) 
2)c usinq the declaration of csic as in 8.3? 

Is DQE. 2E. = (~£2£ .QQ21 a, b) Q2Ql : ( a I !!~~ 
•operation-declaration•? 

b ) D 

e) Is DQE. (£~~1. £~~1> £~~1 ~ = +c an •operation-declaration•? 

8.5 Dyadic indications and operators 

an 

a) How many defining occurrences may be identified by an applied 
occurrence of a •dyadic-indication•? 

b) How many operator defining occurrences of c+c are in the 
•standard-prelude•? 

c) How many • priority-declarations • are in the •standard­
prelude•? 

d) Where is the •priority-declaration• for the •operator• c?c in 
line 3 of 10.5.3.i in the Report? 

e) Is c::=c a •dyadic-indication•? - ,3 

8.6 Identification of dyadic inftications 

a) Is aQt.!Qri!.I + = 8, + = <Jc __. • priority- declaration •? 
b) Can a proper •program• contain 

c(E.f!ori!1 ~Q§ = 9 • x := ~Q§ x)e? 
c) Why does the s r occur in the description of the repetitive 

statement [R.9 2 a,b, 9.c]? 
d) Are •dyadic-indications• subject to protection? 
e) Ar~ •operators• subject to protection? 

8.7 Identification of operators 

a) In line 11.11. y of the Report, the •formula• cvalue of ec 
1a occurs. Where is the defining occurrence--of its 
•operator•? 

b) In line 11.11.at o1 
occurs. Where is i 

c) In line 11. 11.1 
occurs. Where is i 

d) Where is the defin : 
the •formula• c10' 

e) Where is the defin~ 
•formula• c"a" < 

8.8 Elaboration o1 

a) What is the value 1 
a > Oc? 

b) What •closed-:::lau: 
elaboration of thE 
•declaration• abo 1 

8. 9 Monadic opera · 

a) What is the value c 
b) Is ex :=: yc a •fo1 
c ) Is ex + : = rea 1 : r i 
d) Is areal +-reala a 
e) What-is-the-value c 

8.10 Related mode: 

a) Are the modes a.e.fQ~ 
b) Are the modes aref 
c) Are the modes --;;-1 

QQ2l)c related? 
d) Can the •declarer• 

proper •program•? 
e) Can a (2E. - = (unioJ 

2.£? - = (.!!.!li.Q.!l (!~f 
be contained in a 

8.11 Peano curves 

a) What would the •fo1 
b) Write this algo l 

procedures. 
c) Translate the algol 

8. 1 2 Chinese ring: 

a) What is printed by 
b) What is printed by 
c) What is the purpo~ 
d) What is printed by 
e) Rewrite this 

dec lara ti ons•. 
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b) In line 11.11.at of the Report, the •formula• of onec 
o=curs. Where is the defining occurrence of its •operator•? 

c) In line 11.11.1 of the Report, the •formula• ca ::: zeroc 
occurs. Where is the defining occurrence of its •operator•? 

d) Where is the defining occurrence of the •operator• e~rc in 
the •formula• e101 or bin 6c? 

e) Where is the defining-occurrence of the •operator• e<e in the 
•formula• c"a" < (§i£.!ng :)c? 

8.8 Elaboration of formulas 

a) what is the value possessed by ej:c in e~.E t ::; (!~21 a) Q~.Ql : 
a > Oe? 

b) What •closed-::lause• is elaborated as 'i result of the 
elaboration of the •formula• e! XC in the reach of the 
•declaration• above? 

8.9 ~onadic operators 

a) What is the value of c2 + - - + - 3c? 
b) Is ex :=: ye a •formula•? 
c) Is ex +:= £~~! : randome a •formula•? 
d) Is areal + realc a •formula•? 
e) What-is-the-value of e-1 .! 2 = -1 .! -2c? 

8.10 Related modes 

a) Are the modes aEfQf i~!c and cf~21c related? 
b) Are the modes cf~f £~! .!Etc and er~f E£Qf in!c related? 
c) Are the modes cEfQf ~ni~nC!n!, £~21lc and c~g!Qg(E£~f .!n!r 

QQQl) c related? 
d) Can the •declarer• D~!.!.QQ(ff.Qf f~!l:r E£.Qf)c be contained in a 

proper •program•? 
e) can c (.QE- = (~g!Qn(.QQQ.J:, !~! fh!£) a) in! : 2 

QE - = (.!!Ei~n (f~f .!n!. f!!!!!l a) : 3 - (f!!~f : = "a")) o 
be contained in a proper •program•? 

8.11 Peano curves 

a) What would the •formula• c!!!§~ + falseo 'iccomplish? 
b) write this algorithm using four- mutually recursive 

procedures. 
c) Translate the algorith11 into FORTRAN. 

8.12 Chinese rings 

a) What is printed by c2 g~~! Oc? 
b) What is printed by c3 Q.Q~Q Oc? 
c) What is the purpose of the •declaration• c_!g! a := ale? 
d) What is printed by c6 Q.Q!Q 2c? 
e) Rewrite this algorithm without using •operation-

declarations•. 
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9 The grammar 

9.1 The syntactic elements 

The graJRmar of ALGOL 68 using both "small-" an1 
"large syntactic marks" (the ower and upper case letters of the 
alphabet) [R.1.1.2.a]. Thu, •base• consists of four small 
syntactic marks and •MODE• consists of four large syntactic 
marks. A sequence of or more small syntactic marks is a 
"protonotion" [R.1.1.2.b]. For example, •base• is a protonotion 
and so is •streets-that-flow-like-a-tedious-argument•, though 
the latter will not be found in the ALGOL 68 grammar. (The 
presence of hyphens within protonotions may be ignored.) 

The syntax of ALGOL 68 is a set of "production rules of the 
strict language" ("production rules", for short). A production 
rule is a protonotion followed by a colon followed by a list of 
protonotions separated by commas and followed by a point. A 
"notion" is a protonotion for which there is a production rule, 
i.e., it lies to the left of the colon in some production rule. 
For example, •integral denotation• is a notion because of the 
existence of the production rule 

•integral denotation : digit token sequence.• 
[ R.5.1.1. 1.a), but •base• is not, for there is no production 
rule for it [R.8.6.0.1.a]. 

Any protonotion ending with •symbol•, e.g., •begin-symbol•, 
is a "symbol". 

A "direct production" of a notion is the part between the 
colon and the point in a productio~ rule for that notion. Thus, A 
•digit-token-sequence• (see above) 1s a direct production 
•integral-denotation• and •insertion-option, radix, letter- • is 
a direct production of •radix-mould• [R.5.5.2.h]. direct 
production of a notion is therefore a list of protonot1ons (the 
"members") separated by commas [R.1.1.2.b]. 

A direct production of a notion is also a "production" of 
that notion. If in a production of a given notion, some notion 
("productive member") is replaced by one of its productions, 
then the result is also a production of the given notion. This 
replacement process may be repeated as often as we please and, 
in parsing, normally continues until all the notions have been 
replaced and the result is a list of symbols. Then we have a 
"terminal production" of the given notion. For example, 

•digit one symbol, digit two symbol• 
is a terminal production of the notion •integral-denotation•. 

9. 2 Two levels 

The syntax of ALGOL 68 is a set of production rules for 
notions (the production rules of the strict language) as 
described in section 9.1 above. only a few of the actual 
production rules are explicitly given in the Report. The number 
of production rules is infinite and the rule 

•integral denotation : digit token sequence.• 

[ R.5.1.1.1.a] is c 
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[ R.5.1.1.1.a] is one of them. The others may be obtained, when 
required, fro• a two level grammar which we shall now describe. 
A typical production rule of the strict language is 

•reference to real assignation : 
reference to real destination, becomes symbol, real source.• 

It is obtained from the rule in the Report 
•reference to M)DE assignation : 

reference to MODE destination, becomes symbol, MODE source.• 
[R.8.3.1. 1.a ], by replacing the metanotion •MJDE• consistently 
by one of its terminal productions, viz., •real•. The rules of 
the Report are called simply "rules" without further 
qualification. We shall be speaking of several different sets of 
rules, so it is perhaps just as well to use the word "hyper­
rule" for the rules (such as the one just given) found in 
Chapters 2 up to 8 of the Report, especially if there may be 
some doubt about which set of rules we are referring to. A 
hyper-rule thus differs from a production rule of the strict 
language in that it may contain zero or more metanotions and 
zero or more semicolons. A production rule of the strict 
language contains no metanotions and no semicolons. 

Another set of rules is the "metarules11 • These are "found in 
Chapter 1 of the Report. A typical metar ul~is 1'\.eN\.~ 

•FORESE : ADIC formula ; cohesion ; base.• 1 J 
[R.1.2.4.c]. A metarule may be distinguish from other rules by 
the fact that it has one "metanotion 11 se q uence of large 
syntactic marks) to the left of the clan and zero or more 
semicolons to the right. However this is not sufficient to 
recognize one, for 

•DIGIT : DIGIT symbol.• 
[R.3.0.3.d] is a hyper-rule, not a metarule. From the metarules 
we may derive the production rules of the metalanguage in a 
rather simple way. 

Thus, in summary, the ALGOL 68 grammar consists of two sets 
of rules 

(i) the metarules (in Chapter 1) and 
(ii) the hyper-rules (in Chapters 2 up to 8). 

The production rules for the strict language are derived from 
both the metarules and the hyper-rules by a process which we 
shall explain, by example, in section 9.5. 

9.3 The metarules 

A typical metarule is 
•FORESE : ADIC formula ; cohesion ; base.• 

[R.~.2.4.c]. It provides three production rules for the 
metalanguage, which are 

•FORESE ADIC formula.• 
•FORESE cohesion.• 

and 
•FORESE base.• 

Thus a production rule of the metalanguage contains no 
semicolons. The two direct productions •cohesion• and •base• 3re 
terminal (in the metalanguage), but the direct production •ADIC 
formula• may be produced further by using the metarule for 
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•ADIC• [R. 1.2.4.d]. The terminal productions of metanoticns are 
always protonotions. 

The words used for the metanotions are usually chosen in 
such a way that they help to convey a meaning. Coined words, 
such as •FORESE• are often mnemonic. Thus, •FORESE• is made up 
from 

formula 
and FEAT from 

coh~sion 

firm w~~k soft 
The reader will find many others, similarly coined and usually 
the mnemonic is glaringly apparent. It is useful to remember 
that every metanotion ending with •ETY• always has •EMPTY• as 
one of its (not necessarily direct) productions. 

The metanotion •ALPHA• is of interest because it has all 
the letters of the alphabet (small syntactic marks [R.1.1.2.a ]) 
as direct produ=tions. If more are required (perhaps in 
languages other than English), then it is permitted to add them 
(see 1.1.4 Step 2 in the Report). 

Another metarule of significance is 
•EMPTY : .• 

(R.1.2.1.i], from which we see that the metanotion •EMPTY•, if 
it appears in one of the hyper-rules, or in those derived from 
them, may be consistently deleted. 

Two metarules to watch are 
•CLOSED : closed ; collateral ; conditional.• 

fR.1.2.3.r] and 
· •LIST: list ; sequence.• 
fR.1.2.5.h], where a distinction must be made between the 
metanotion, which appears on the left of the rule, and the first 
production of each, which is a protonotion. In speech this 
distinction will be lost. 

Another interesting metarule is ~~ 
•NOTION : ALPHA ; NOTION, ALPHA~• 

fR.1.2.5.f]. Roughly speaking, anY, ing is a terminal productic;m 
of •NOTION•. More precisely, any sequence of small syntact1= 
marks (the letters of the alphabet as used in the syntax) is a 
terminal production of •NOTION•. This is so because the 
productions of •ALPHA• are the small syntactic marks. This fact 
is used heavily in the rules of section 3.0.1 of the Report. 

Joe might also wonder about the metarules 
•LMODE MODE.• 

and 
• RMODE MODE. • 

[R.1.2.2.j,k]. The mystery may be resolved by examining the rule 
for •formulas• [ R. 8. 4. 1. b ], where the mode of the left 
•operand•, that of the right •operand• and that of the result 
delivered by the operation all appear in the same hyper-rule. 
These modes may be different, so it would not do to use the 
metanotion •MODE• for all three of them. Other instances of this 
same phenomenon are suggested by the metarule 

•LOSETY : LKOODSE' 
[ R.1.2.2.o], which 
declarers• [B.7.1.1 
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•LOS!TI : LMOODSETY. • 
[R.1.2.2.o], which is used in the hyper-rule for •united­
declarers• [B.7.1.1.ee,ff], and by 

•ROWiSETY : ROVSETY.• 
[R.1.2.2.d] used in the hyper-rule for •slices• [R.8.6.1.1.a], 
where •ROWVSETY• counts the number of •row-of•s not involved in 
the •indexer• and •ROWSETY• counts the number of •trimscripts• 
which are •trimmers•. 

The two rules 
•LFIELDSETY FIELDS and EMPTY.• 

and 
•RFIELDSETY: and FIELDS EMPTY.• 

[R.1.2.2.q,r) are another pair which play a similar role in the 
rule for •selections• [R.8.5.2.1.a]. 

There are two metarules in which the only 
of the metanotion is a protonotion. They are 

•COMPLEX : structured with real field letter 
and real field letter i letter m• 

direct production 

r letter e 

[R.1.2.2.s) and 
1 letter o letter n letter g.• •LENGTH : letter 

fR.1.2.2.v]. This 
metanotions in some 
shortening the rule 

means that the presence of one of these 
hyper-rule is merely for the convenience of 
and plays no other grammatical role. 

9.4 The hyper-rules 

A good introduction to the hyper-rules is to be 
section 3.0.1 of the Report, where are collected 
several rules which should be mastered early, for they 
extensively elsewhere. A typical example is 

•NOTION option : NOTION ; EMPTY.• 

found in 
together 
are use1 

[R.3.0.1.b]. The first step in deriving production rules of the 
strict language, from the hyper-rules, is to make two new rules 
as follows: 

•HOTION option: NOTION.• 
and 

•NOTION option EMPTY. • 
As a next step we may replace each metanotion consistently by 
one of its terminal productions. For example, we might 
substitute •integral-part• for •NOTION• and nothing at all for 
•EMPTY•. This will now give us two production rules of the 
strict language. They are 

•integral part option 
and 

•integral part option 

integra 1 part. • 

.. 
Note that •integral-part-option• means what the words 

suggest. i.e., either the presence or absence of an •integral­
part•. This is used with good effect in the rule 

•variable point numeral : 
integral part option, fractional part.• 

[R.5.1.2.1.b). Examples are c3.45c and c.45c. 
notions in ALGOL 68 are similarly chosen so 
(protonotions) used give some suggestion of 

Many of the 
that the words 
the semanti:: 
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elaboration. 

The pair of hyper- rules 
•N OTION pack : open symbol, NOTION, clos e symbol. • 

and 
•NOTION package : begin symbol, MOTION , end symbol.• 

f R.1.0.1.h,i] are also us e d in several places elsewhere. Thus, 
if oxo is a certain • n •, t h e n o ( x)o is an •n-pack• and o~~gin x 
~g Q o is an •n- package•. 

The hyper-rule 
•NOTION LIST proper : NOTION , LIS T separ a tor, NOTION LIST.• 

fR.3 . 0.1. g ] ensures that at lea s t two •NCTION•s will appear in 
the production. It is used, for example, in the rule for 
•collateral-declarations• [R.6.2 .1.a ] 

•collate ral dec la ration : un i ta ry de c laration list proper• 
me anin g that, for e xample, of~~1 x , ~ni io is a •collateral­
d eclaration• but o~~~1 xo i s not . 

The hyper-rules 
•NOTION LIS T : 

chain of NOTIO Ns separated b y LIST separators.• 
and 

•chain of NOTIONs separated by SEPARATORs : NOTION 
NOTION, SEPARATOR, 

chain of NOTIONs 
[ R. 3 • 0 • 1 • d, c ] a r e u sed 

sepa r a ted by SEPARATORs .• 
to desc ribe such objects as 

o123 o 
which is a •cha i n-of-digit- t ok ens-separated-b y-EMPTYs•, 

o l , 2, 3o , 
wbic h i s 
symbol s •, 

a •cha i n-of-strong- in t egral- uni t s-se Fa rated- by-comma­
a nd 

D 1 ; 2 ; )D 

whic h is a •chain-of - s t rong-integ r al- units- separated-by-go-on­
sym bol s •. These are used principa l l y in the rules for •seri~l­

clauses • [R.6.1.1], but in ot her places also. 

9 .5 A sim ple language 

We shall now use t his kind of g rammar to describe an 
intere s ti ng but trivial language. By t h i s small example we shall 
b e a ble to see the complet e gram mar in a few lines. There are 
o nl y three •symbols•, two h yp e r-rules and two metarules. Thus it 
will be e asier to get an overa ll v iew of how the grammar works. 

Th e langua ge we choos e i s tha t i n which the only sentence s 
(or progr a ms ) ar e 

ox yz o, oxxyy zzo, oxx xy y yzzzc ••• 
Pe rhap s we could say that the f ol lowing would c ause an ALGOL 68 
computer to print sentences of th i s language until it runs out 
of tim e or memory space. 

a~~~!n ~i!!TI9 a, b, c : 
!!Q print ((a +:= "x") + (b +:= "Y") + (c +:= "z")) 
en de 

Th e reason that this language is of interest is that it is known 
fH ) t hat i t c a nnot be described by a context-free grammar such 

as that used for 
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as that used for the syntax of ALGOL 60. 

The three symbols of the language and their representations 
are 

symbol 
•letter x symbol• 
•letter y symbol• 

representation 
oxo 
oyo 

•letter z symbol• ozo 
This corresponds to the whole of section 3.1.1 of the Report. 
The three hyper-rules are 
(~ •sentence : 

NUMBER letter x, NUMBER letter y, NUMBER letter z.• 
(ii) •NUMBER plus one LETTER : NUMBER LETTER, one LETrER.• 
(iii) •one LETTER : LETTER symbol. • 

These three rules correspond to all the hyper-rules found in 
Chapters 2 up to and including 8 of the Report. Rule (i) 
expresses the requirement that the number of occurrences of each 
of the different letters should be the same. Rule (ii) will be 
used to interpret this number, i.e., actually to count them out 
one by one. Rule (ii~ is almost the same as the hyper-rules 
3.0.2.b and 3.0.3.d of the Report. Rule (ii) might be compared 
with 7.1.1.q of the Report, where the multiplicity of a •rower• 
is being counted. Rule (iii) is present in order to satisfy the 
requirement of ALGOL 68 that only protonotions ending in 
•symbol• are terminal productions of the grammar. Without this 
requirement we could describe the language with two hyper-rules 
instead .of three. 

The two metarules are 
(I) •LETTER : letter x ; letter y ; letter z.• 
(II} •NU MBER : one ; NUMBER plus one. • 

These two rnetarules correspond to the metarules found in section 
1.2 of the Report. The first metarule, (I), is there so that we 
may be able, with one word, to speak of any one of the letters. 
It is similar to the metarule 1.2.1.t of the Report for the 
metanotion •ALPHA•. We could do without metarule (I), but then 
we should need seven hyper-rules instead of three. Metarule (II) 
is essential. In it, •NUMBER• is used as a counter. The terminal 
productions of the meta notion •NUMBER• are •one•, •one- plus­
one•, •one-plus-one-plus-one• and so on. The metarule is 
somewhat similar to the metarule of the Report fer the 
metanotion •ROWS• [R.1.2.2.b]. 

We shall now go through, in detail, the process of finding 
some of the production rules of the strict language, as defined 
by the above grammar. This process is described in sections 
1.1.4 and 1.1.5 of the Report. Since there are infinitely many 
production rules of the strict language (even for the 
minilanguage above), we cannot give them all here. 

If we substitute the first terminal production of •NUMBER•, 
viz., •one•, for that metanotion, in hyper-rule (i), it yields a 
new rule 

(a) •sentence : one letter x, one letter y, one letter z.• 
The direct production of •sentence• in this new rule is not 
terminal, since it contains a notion which does not ena with 
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•symbol•. To remedy this we use hyper-rule (iii) and, replacing 
•LETTER• by each one of its terminal productions in tu~ n, we 
obtain 

(b) •one letter x 
(c) •one letter y 

and 

letter x symbol. • 
letter y symbol.• 

(d) •one letter z letter z symbol. • 
The rules (a), (b), (c) and (d) are each production rules of the 
strict language. If now, in the right hand side of (a), we make 
u s e of the productions in (b) , (c) and (d), then we obtain that 

•letter x symbol, letter y symbol, letter z symbol• 
is a terminal production of the notion •sentence•. This means 
that we may speak of cxyzo as a •sentence• in the representation 
lanquaqe. 

We now take another termina l production of •NUMBER•, viz., 
•on e - p lus-one•, and substitute tha t i n the hyper-rule (i). It 
yield s 

(e) •sentence : one plus one l e tte r x, 
one plus one letter y, o n e plus one l e tter z.• 

Also, in (ii), we replace •NUMBER• by •one•. (Note that this is 
the first use of hyper-rule (ii).) This gives 

(f) •one plus one letter x one lette r x, one letter x. • 
(q) •one plus one letter y one letter y, one letter y. • 

ann 
(h) •one plus one letter z one letter z, one l e tter z. • 

Now, combining production rules (e), (f), (g) and (h) with 
production rules (b), (c) and (d) . obtained a bove, we have that 
the object 

•letter x symbol, letter x sy mbol, letter y symbol, 
l e tter y symbol, letter z symbol, letter z symbo l • 

i s also a terminal product i o n of •sentence•. In 

sentenc e 

r---------------------+----------------------, 
one-plus-one- one- plu s-one- one-plus-one-

letter-x let t e r-y letter-z 
I I I 

r----L-----, r---~-----, r----~----, 
one- one- one- one- one- one-

the 

letter-x letter-x letter-y letter-y letter-z letter-z 
I I 

letter-x- letter-x­
symbo 1 symbol 

I I 
ox X 

I I 
letter-y- letter-y-
symbol symbol 

I I 
y y 

Fi g .9.5 

I I 
letter-z- letter-z-

symbol symbol 
I I 
z zc 

representation language we may therefore now say that 
cxxyyzzo 

is a •sentence• of the strict language. A sketch of the parse of 
this •sentence• is shown in figure 9.5. Perhaps we have now done 
enough of this to suggest that it is easy to show that 
oxxxyyyzzzo is a •sentence•. A crucial new rule in this process 
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is 
•one plus one plus one LETTER : 

one plus one LETTER, one LETTER.• 
moreover, the process for finding more •sentences• of the 
language should be clear. 

It will also be obvious that the same language might be 
described more concisely by the grammar 

(I) L x y ; z. (i) s N x, N y, N z. 
(II) N : ; N p. (ii) N p L : N L, L • 

(iii) L L symbol. 
and if we drop the requirement that every terminal must end with 
•symbol• by agreeing that •x, y• and •z• are already terminals, 
then even more concisely by 

(I) L : X ; y ; z. (i) s : N x, N y, N z. 
(11) N : ; M p. (ii) N p L : N L, L. 

For the student of formal grammars this is more natural, for he 
is by nature a n a lgebr a ist who is dedicated to the cult of 
concise expression. In a description of a practical programming 
language we can afford to be more verbose so that even those who 
are not algebraists can read the rules and think that they 
understand them • 

9.6 How to read the grammar 

How do we really use a grammar such as the one we are 
considering? How do we read it? Is it necessary always to 
perform, in our minds, the replacement of the metanotions by 
their terminal productions before we can understand what the 
hyper-rules say? The answer to this is probably that we should 
have the experience of making these detailed substitutions at 
least once. With this experience we may then proceed as does the 
mathematician who finds that it is unnecessary to prove a 
theorem every time that he uses its result. His method is 
normally to check through the proof of the theorem at lea s t once 
and then to remember its hypothesis and its conclusion. 

For us, the metalanguage plays the role of a body of 
theorems and the results we need to remember are the shape of 
the terminal productions of the metanotions. For example, in the 
grammar of the minilanguage given in the last section, we need 
only remember that the terminal productions of •LETTER• are 
•letter-x-symbol•, •letter-y-symbol• and •letter-z-symbol• and 
that the terminal productions of •NUMBER• are •one •, •one-plus­
one •, •on e-plus-one-plus-one• and so on. With this information 
at hand, th e comple te language may be comprehended merely by 
reading the three hyper-rules 

(i) •se nt e nce : 
HUMBER letter x, NUMBER letter y, NUMBER letter z.• 

(ii) •NUMBER plus one LETlER : NUMBER LETTER, one LETTER.• 
(iii) , •one LETTER : LETTER symbol. • 

The same method of comprehension applies to ALGOL 68. The 
metarules should be well studied first and the shape of the 
terminal productions (at least of the commonly used ones) should 
be known. With this knowledge we can then read the hyper-rules 
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and comprehend their meaning. 

fhe most im portant metanotion in ALGOL 68 is •MODE•. For 
this reason its terminal productions should be well known before 
trying to read the hyper- rules. A chart is sometimes a helpful 
aid in understan1ing the metalanguage, though others may prefer 
to rely upon the alphabetic listing of the metarules which comes 
as a loose page with the Report. If you have not already done 

MODE 
I 

r-------------L- -----, 
I I 
MOOD UNIT ED 

I I 
r-----------r-J r---------J 
I I 
TYPE STO WF.D 

I 
union-of-LMOODS-MOOD-mode 

I I I 
r--------1 r-----------4-------- -- -, L----r------, 
I I I I I I 
format 1 s tructured-with-FIELDS row-of-MODE LMOODS-LMOOD 

I I I 
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Fig.9.6 

so, it is a good idea to take this loose page and arrange it so 
that it is attached to your c o py as a fold-out page in such a 
way that it may be in view no matter what page of the Report you 
hav e o pen. For those who like charts, we reproduce, in figure 
9.6, an abbreviated syntactic chart for the metanotion •MODE•, 
in which •LETTER• and •DIGIT• are the only metanotions not 
produced. Whichever method you prefer, ("people who like this 
sort of thing will find that this is the sort of thing they 
like") a careful study of the metalanguage is essential to the 
comprehension of the hyper-rules and thus of the grammar of the 
lan g uage. 
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9.7 The indicators 

A "hypernotion" [R. 1.3] is a sequence of metanotions and;or 
protonotions, e.g., ·~ODE field TAG•. A hyper-rule (in the sense 
used in section 9.2 above) is therefore a bypernotion followe3 
by a colon, followed by zero or more hypernotions separated by 
semicolons and;or commas and followed by a point; e.g., 

•strong COERCEHD : COERCEND ; 
strongly ADAPTED to COERCEND.• 

[R.8.2.0.1.d]. If, in a given hypernotion, one or more of its 
metanotions is consistently replaced by a production of that 

strongly-ADAPTED-to-COERCEND 
--r---

1 
I 
I 
I 
I 

ADJUSrED 
I 
I 
I 
I 
I 
I 

----r---
·-----1 

MOlD FORI'! 
I I 

~ODE I 
I I 

~OOD I 
I I 

TYPE FORESE 
I I 

PLAIN I 
I I 

INTREAL I 
---L------ ~-- --L 

strongly-deprocedured-to-real-base 
---T--

1 
I 
I 
I 
I 
I 
I 
I 
I 

-r---
INTR EA L 

I 
PLAIN 

I 
TYPE 

I 
MOOD 

I 
MODE 

--~ 

I 
I 
I 
I 

FORESE 
I 
I 
I 
I 

__ .,L__ ~- _ _i_ 

STIRMly-deprocedured-to-eOID-FOR~ 

Fig.9.7 

metanotion, then we have another hyper- notion, or perhaps a 
protonotion. Let us call this an "offshoot" of the given 
bypernotion; e.g., •strongly deprocedured to real base• is a 
terminal offshoot of •strongly ADAPTED to COERCEND•, and 
•INTBEAL base• is an offshoot of •MODE base•. In order to read 
the grammar easily, we frequently need to know whether two given 
hypernotions have a common offshoot. For example, 

•strongly ADAPTED to COERC!ND• 
and 

•STIRMly deprocedured to MOID FORM• 
have at least one common offshoot, say 

•strongly deprocedured to real base• 
That this is so can be seen by examining figure 9.7, where the 
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steps in obtaining this offshoot are shown. In fact, examination 
of this same figure shows that there are infinitely many common 
terminal offshoots of these two hypernotions. They are all 
offshoots of a "m~ximal common offshoot", the hypernotion 

•strongly deprocedured to MOID FORM• 
It is the existen=e of some maximal common offshoot, rather than 
that of any particular common terminal offshoot which becomes 
the point of focus when looking at two such hypernotions. Note 
that because of the requirement of consistent replacement, some 
offshoots may be too restrictive to be useful, e.g., the 
offshoot •procedure-with-~ODE-~rameter-and-MODE-parameter-MODE­
PRIORITY-operator• of the hypernotion •procedure-with-LMODE­
parameter-and-RMODE-parameter-MOID-PRIORITY-operator• 
[R.4.3.1.b]. 

In the process of parsing, given some hypernotion to the 
right of the colon in a hyper-rule, we need to know how to finj 
a hyper-rule whose hypernotion to the left of the colon has a 
common offshoot with the given one. To help us in this search 
there are "indicators" [R.1.3]. The example considered above 
will actually occur in reading the Report. :onsider the two 
hyper-rules [R.8.2.0.1.d] 

•strong COERCEND : COERCEND ; 
strongly ADAPTED to CCERCEND {822a}.• 

and [R.8.2.2.1.a] 
•STIRMly deprocedured to MOlD FORM{820d} 

procedure MOID FORM ; 
STIR~ly FITTED to procedure MOlD FORM.• 

We have copied these two hyper-rules from the Report, together 
with two of the indicators, "822a" and "820d 11 • In order to 
conserve space within the hyper-rules of the Report, the 
indicators have been compressed, according to obvious 
conventions [R.1.3]. If we expan d them again, i.e., 822a becomes 
8.2.2. l.a and 820d becomes 8.2.0.1.d, then we see that the 
hypernotion on the right of the hyper-rule 8.2.0.1.d points to 
the hyper-rule 8.2.2.1.a and the hypernotion on the left of 
hyper-rule 8.2.2.1.a points to hyper-rule 8.2.0.1.d. We are ~ bus 
aided, in both directions, in finding hypernotions with common 
offshoots. 

The indicators are clustered rather thickly in the hyper­
rules concerning coercion, in section 8.2 of the Report. Perhaps 
this is evidence that it is in this section that the power of 
the two-level grammar is being used to its fullest. A similar, 
or perhaps greater, clustering of indicators might have been 
found in section 3.0.1 of the Report, dealing with chains, 
lists, sequences and options, but these have not been included 
in the Report since their great number would have rendered their 
presence of little value. Instead, the indicators have bypassed 
this section, which the reader is therefore advised to become 
familiar with at an early stage. 
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the colon) in any hyper-rule. An example of this occurs in the 
hyper-rule for strong coercion quoted above [ R.8.2.0. 1.d]. In 
this case it is there because, e.g., 

•strongly-widened-to-procedure-real-base• 
is a dead end. It is not an offshoot of any hypernotion on the 
left of any hyper-rule [R.8.2.5.1]; in fact, it is not a 
•notion •. 

Review questions 

9.1 The syntactic elements 

a) Is •MODE base• a protonoticn? 
b) Is •all-mimsy-were-the-borogroves• a protonotion? 
c) Is •cast• a notion? 
d) Is •MABEL identifier• a notion [R.4.4.1.b]? 
e) Is •long-integral-denotation• a notion? 

9.2 The metarules 

a) How many production 
for ALGOL 68? 

rules of the strict language are there 

b) How many production rules of 
explicitly in section 6.1.1 

c) How many production rules 
derived from 7.1.1.s? 

the strict language are listed 
of the Report? 
of the strict language can be 

d) How many produ:::tion rules of the strict language 
derived from 6.1.1.d? 

e) What are the terminal productions of •VICrAL•? 

9.3 The metarules 

a) Is •LETTER : LETTER symbol.• a metarule? 
b) How many production rules of the metalanguage can be 

from 1.2.1.r of the Report? 
c) Is •NO!iSTOWED : TYPE ; UNITED. • a production rule 

metalanguage? 
d) Are the terminal productions of • NONPROC• also 

productions of •MODE•? 
e) Is •FIELD• a production of •I'WDE•? 

9.4 The hyper-rules 

a) Is •PARAMETER : MODE parameter.• a hyper-rule? 

can be 

derived 

of the 

terminal 

b) Is •digit-token• a production of •digit-token-sequence­
proper•? 

c) Is c( )c a •strong-closed-[m]-clause•, where (m] represents 
some mode? 

d) What production of •LFIELDSETY• would be used in parsing cim 
of zc? 

e) What production of •LMODE• is used in parsing ex + yo? 

9.5 A simple language 
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a) Define, by means of a two - level grammar, the language whose 
sentences are printed by 

o~~gi~ §!!i~g a, b := "y", c ; 
Q.Q print((a +:= "x") + (b +:= "Y") + (c +:= "zz")) 
endc. 

b) Define,-by means of a two-level grammar, the language whose 
sentences are printed by 

c~~gi~ §!!i~g a, b, c 
Q.Q (print (a+ b +c) (a + : = "x" , b +: = " y", c + : = " z" )) 
g~QD. 

c) Rewrite the grammar of the language considered in 9.5 using 
two metarules and two hyper-rules and yet requiring that 
terminals end in •symbol•. 

a) 
b) 

c) 

d) 
e) 

a) 

b) 

c) 

d) 

e) 

9.6 How to read the grammar 

Is •real-format• a terminal production of ·~ODE•? 
Is •reference-to-procedure-row-of-character• a terminal 
production of •MODE•? 

Is •long-structured-with-real-field-letter-1• a terminal 
production of •MODE•? 

Is •procedure• a terminal production of •MODE•? 
Is •procedure-with-real-parameter-real• a terminal production 
of •NONPROC• [R.1.2.2.h)? 

9.7 The indicators 

Why is there 
Report? 

a dead end in •MOID FORM• in 8.2.3.1.a of the 

What is a maximal common offshoot of •virtual NONSTOiED 
declarer• and •VICTAL MODE declarer• (R.7.1.1.a,n]? 

What is a maximal common offshoot of •firmly ADJUSTED to 
CJERCEND• ani •STIRMly dereferenced to MODE FORM• 
fR.8.2.2.1].? 

What is a maximal common offshoot of •STIRMly rowed to MOID 
FORM• and •strongly rowed to REFETY row of MODE FORM• 
[ R. 8. 2. 6. 1 ]? 

What is a maximal common offshoot of •SORTly ADAPTED to 
CJERCEND• and •STIRMly united to MOit FORM• (R.8.2.0.1, 
8. 2. 3. 1 ]? 

• 
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10 "ode declarations 

10.1 Syntax 

A typical •mode-declaration• is 
c~ggg ~2~£1 = ~ti~~!(fg~1 re, Ig!l im)c 

which, by virtue of extensions [R.9.2.b,c), may be written more 
cone ise ly as 

c§!fY~1 £2!£1 = (f~~1 re, im) c 
This •mode-declaration• is, in fact, one of the •declarations• 
of the •standard-prelude• [ R.10. 2. 7. a), which means that the 
programmer may assume that he is within its reach (unless he has 
made a similar •declaration• himself). A simplified parse is 

mode- declaration 
I 

r---------------r------~--~-----------------, 
I I I . I 

mode-symbol mode-indication equals-symbol actual-declarer 
I I I I 

--~-- .J. --------------~---------
£2!£1 = §!I~£!(fg~1 re, I~~.! im)c 

Pig. 10. 1 

shown in fiqure 10.1. The hyper-rule for a •mode-declaration• 
•mode declaration : mode symbol, MODE mode indication, 

equals symbol, actual MODE declarer.• 
[R.7.2.1.a]. The two occurrences of •MODE• here ensure that 
mode of the •actual-declarer• on the right is then envelofed 
the •mode-indication• on the left. 

It is perhaps worth while to look at the hyper-rule 
•MODE mode indi~ation : mode standard ; indicant.• 

is 

the 
by 

[R.4.2.1.b] and to realise that the programmer may choose his 
own •indicant• more or less at will [R. 1. 1.5.b]. He is, however, 
subjected to the restrictions of his installation. It is 
expected that most implementations will permit such •indicants• 
as cabco and cm12c, i.e., objects which look like identifiers 
but -are in bold face (or underlined). Objects which are •mode­
standards• are c§!f.!!!g, §g!~· :H!~, £2~£1, !2!.!:§, .Qy!.g~, 12!!g 
QI!~§, 12!!g 12!!9 .Qi.!:§, 12!!9 !ggg _!Qgg £2~E!c, etc. This means 
that one may write 

or 
c~2gg 12!!g £2~E1 = £2~£1c , 

each of which is legitimate but unpleasant for the human reader. 

10.2 Development 

one purpose of the •mode-declaration• is to introduce a 
shorthand whereby the programmer may save himself trouble. If he 
uses some complicated •declarer•, then he may avoid writing it 
out in full each time that he uses it. A simple example might be 
a numerical analyst, working with vectors and matrices, who may 
wish to use the convenience of the •declaration• 
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o.J!!od~ y = [ l:n) I~~l, 
!!!Qde.!!! = [ 1:n, 1:n] I~~!c 

In the reach of this •declaration•, he may now use these •mode­
indications• as •declarers• by declaring a vector variable with 
oy xlo or a matrix variable with D.!!! x2c. It should be carefully 
noted that the value of one which occurs in the •bounds• of 
these multiple variables is that which is possessed by one at 
the time of elaboration of the •declaration• cv x1, m x2c an:l 
not that possessed at the time of elaboration of-the •mode­
declaration•. An example may help to make this clear. In the 
reach of c!n! nc, the elaboration of 

en := 5 ; !2Q~ y = [1:n] £~~!; 
n := 3 ; J. x1 ; print( .!H~h x1)c 

shoul:l print the value •3• and not the value •5•. This means 
that the •declaration• cJ. x1c acts as though the eye were 
replaced by c( 1:n) f~~1c. This process is known as "developing" 
the •declarer• [R.7.1.2.c]. An important consequence is that, in 
the reach of the •declaration• 

D!QQ~ y = [ 1:n] £~~1. 
realvec = [ 1:n] £~~!c , 

the •mode-indications• -~;~--;nd DI~!1J.~fc, when used as 
•declarers•, both specify the same mode. The actual •symbol• 
(•indicant•) chosen therefore has no influence on the mode. 
Observe that the same principle applies to •identity­
declarations•, for 

cref int name1 = i, name2 = ic 
means that both cn~me1~-and cname2c possess (different instances 
of) the same name. In the reach of the •declaration• cmode f = 
f 1:2)£~!1 1 ~ = ( 1:3)re!}D, the •indicants• CfD and-~~D alSO 
specify the same mode, when used as •declarers•; however, values 
of such modes may run into trouble when assigned, for then the 
bounds are checked [R.8.3.1.2.c Step 3]. 

The examples we have given are simple. However, a •mode­
declaration• may be used for introducing a •mode-indication• 
which, when used as a •declarer•, will specify a mode which 
contains a reference to itself. In fact, this will norm~lly 
occur in a list processing appl i cation. For such a mode, the 
compiler must be able to make some checks to determine whether 
storage space for a value of that mode is indeed possible. It is 
therefore not surprising that the process of developing a mode 
shoul:l have some rather natural restrictions. 

10.3 Infinite modes 

What we call here "infinite modes" are those hinted at in 
the last paragraph. An infinite mode will arise from the 
• dec laration• 

ostruct link = (int val, ref !in! next) c 
In its reach~-the-elaboration-of 

c.J:.!n! a:= (1, 1.!.!!! := (2, 1!!!! .- (3, g]JJ )c 
will qenerate values linked together as shown in Mgure 10.3. In 
such a linked list, the value of the last name is •nil•. If we 
try to write the mode specified by o1!n~c, using small syntactic 
marks, it will be 

•structured-with rea -field-letter-v-

~ij_~, 
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write. 
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let er-a-letter-l-and-reference-to-
( link] et ter-n-let ter-e-le tter- x-let ter-t • 

[link] represents the same mode which we are trying to 
Since the mode contains itself, it is not unnatural to 
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Fig.10.3 

call it an infinite modeCt>. The programmer (and the compile r) 
however, always works with a finite formulation of that mode, so 
that this infiniteness need not bother him. 

10.4 Shielding and showing 

If we consider the mode specified ty o~c, in the reach of 
cmode m = struct(real v, m next) c , 

we soon come to-the con~lusion-that, unlike olinkc above, the 
field selected by cnexto contains, not a name, but--a value of 
the same mode. Of course, this value in turn has such a fiel:i 
and so on ad infinitum. This is troublesome, for if we try to 
visualize how storage might be allocated for such a value, it is 
clear that it cannot be done in a computer whose storage is of 
finite size. It is therefore necessary to exclude such •mode­
declarations• from proper •programs•. rhe exclusion rests upon 
the fact that, in this •mode-declaration•, its •actu~l­

declarer•, D§if!!£i(f~~.! v, !!! next)o, "shows" [R.4.4.4.t] c~c, 
which is the •mode-indication• on the left. It is therefore 
illeqal. However, in 

omode n = struct(real v, f~f Q next) o 
the •actual-de~Iarer• cstruct (reai v, ref n next)c does net show 
c!!c, so that this •de~laration• may-be-contained in a proper 
•program•. Whether an •actual-declarer• shows a •mode­
indication• rests upon whether that •mode-indication• is not 
11 shielded 11 (R.4.4.4.a]. We must therefore know what is meant by 

Ct> Those who are bothered by these infinities should consult 
the work of C.Pair [Pa], L.Meertens [M], and W.Brown (B). 
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shielding a •mode-indication• before we c~n understand how 
certain •mode-declarations• can be excluded. Roughly speaking, a 
•mode-indication• contained in a given •declarer• is shielded if 
its presence in that position does not lead to difficulties in 
allocating computer storage for a value of the mode which that 
•declarer• specifies. 

For the •mode-indication• D!D, examples of •declarers• in 
which that cmo is shielded are 

ostruct(int k, ref m n) o 
c£§!-§!IY£!<! n:-£~ii a ) o 
D££.QS: (!!!, .!!!J:)o 
D££.Q£ (£~~_!) !D 

and 
n[ 1: (!.QQ~ ! = int ; m k ; re a d (k) ; k) ] £~~.!o 

Examples of •declarers• in-which D! D i s not shielded are 
D!D 
D£~! !D 
O££.Q£ !D 
n[ 1: n] ~n 

and 
nuni O!! (i!!E• ..!!!) 0 

The precise definition of shielding is given in the Report 
[R.4.4.4.a], so we shall only paraphrase it here by saying that 
nmn is shielded if there is both a o§!I.~fto and a oi_~fn to its 
left, or if it is in, or follows, a •parameters-pack•, or if it 
is essentially local to one of the bounds of the •declarer•. 

As a first approximation, one may now say that a •mode­
indication• which is not shielded is shown by the •declarer• 
containing it. We then exclude from proper •programs• all •mode­
declarations• whose •mode-indication• is shown by its •actual­
declarer•. This immediately excludes such undesirable objects as 

O!.QQ~ ~ = ~~ 
!! = EI..QS: f!, 
s: = I.~f £, 
g = [l:n] Q, 
~ = y~!on(~, ch~!)O 

However, examination of the •declaration• 
D!.Q_1~ _! = f~! g_, 

.9 = .P!Q£ fa 
reveals that we are still in trouble with the first 
approximation to the concept of showing. For, although C£~! go 
does not explicitly show o_!o, the elaboration of O£~! go 
[R.7.1.2 Step 1] involves the development of ego and would give 
us the •declarer• D£~f E£.QS: fc, which does indeed show o!c. It 
is therefore necessary to insist that we must develop all •mode­
indications• which are not shielded in order to find the •mode­
indications• which are shown by an •actual-declarer•. The 
definition of showing is carefully stated in the Report 
f R.4.4.4. b], so we shall not repeat it here. Perhaps the 
motivation given here for that careful statement is sufficient 
for its understanding. 

10.5 Identificatic 
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10.5 Identification 

Within a •serial-clause• containinq a •mode-declaril.tion•, 
•mode-indications• are subject to protection [ R.6.0.2.d], in the 
same manner as are •identifiers• and •dyadic-iniications•, in 
order that they may not become confused with the same 
•indication• used elsewhere. It is possible therefore to write 

tl(~Q£g ~ = ~~~1 ; ~ X := 2 ; 
ftL----(-----.J ¢ 

(~QQ£ ~ = l~! ; ~X .­
¢ L----(----.J ¢ 

print(x)) 
print(x))n 

whereupon the values printed shoulrt be •1• and •2.0•. The methoj 
of identification of the •mode-indications• is shown by "--<--". 

Althouqh this identification process is familiar (it works 
the same way for •identifiers•), there is one small point to be 

declaration 
I 

r-------------------r---~-----------r---T------, 
sub- rower bus- 1 I 

symbol symbol I I 
I r---------+-------, I I I 
1 unitary-clause unitary-clause! 1 identifier 
I I I I I I 
I r-----+-----, I I declarer I 
I 1 formula I up-to- formula I I I 
I I I I symbol I I I I 
L L --~-- L L ----~---- ~ ~ ~ 

0 ( b b + c d 
T T --r-- T r ----T---- T T 

L-----+-----J I I I I 
formal- cast-of- unitary- 1 I 

parameters- symbol clause I I 
open- pack 1 I close- I 

symbol 1 1 I symbol I 
L---------.l.--------rL------~------__J I 

I I 
routine-denotation 

I 
operand 

cpera tor 
I 
I 

en 
T 

I 
I 
I 
I 

operand 
I 
I 
I 
I 
I 

L---------T----------~------J 

w:1tched carefully. 
a •mode-indication• 
The reason for this 

o¢1¢ 
¢2¢ 

¢3¢ 
¢4¢ 

I 
formula 

Fig. 10 • .5 

It is that no •indicant• may b?. used both as 
and as il •monadic-in chcat ion• [R.1. 1 • .5.h]. 
is best shown by the following example. 

R~9!fl !~i h, c, e ; ¢ ¢ 

Eggin ~2Q~ 2 = ~~21 
( (2 b) : b + c) 1 e 

¢ • • • rt 



126 An ALGOL 68 Companion 

¢5¢ ~.!!Q ; 
t6t QE ~ = c!n! x> !n! 1 + x 
¢7¢ ¢ ••• ¢ 

¢8¢ ~QQ~ g = QQQ! 
¢9¢ ¢ ••• ¢ 

¢10¢ ~ndo 
The problem here is whether o(~ b) b + co is a •row-of-rower• 
(remember that it is permit ted to replace o[ )o by o ( ) o 
fR.9.2.q)) and therefore c((~ b) b +c) c! eo is a 
•declaration•, or whether o((~ b) b + c)o is a •routine­
denotation• and therefore o ( {~ b) : b + c) g eo is a •formula•. 
These two possibilities are sketched in figure 10.5. If it were 
such that o~o could be used as a •mode-indication• in line 2, 
and again as a •monadic-indication•, in line 6, then confusion 
would reign, for the matter can only be resolved when we meet 
the •1eclaration• of ogo in line 8. If we now make it illegal to 
use c~o both as a •monadic-indication• and as a •mode­
indication•, then this unhappy situation does not arise. For 
those interested in compilation problems, this example shows why 
it is necessary to identify all •mode-indications• before a 
detailed parse of the •program• is made, for the identification 
of the second occurrence of obo on line 3 depends upon the 
information discovered in line 6. 

10.6 Equivalence of mode indications 

In the •mode-declaration• 
omode a = ref real, 
---- ~ = ~~! E~~lo 

it is rather obvious that both o~o and OQo, when used as 
• declarers•, specify the same mode. However, since a •mode­
declaration• has the possibility of depending on other •mode­
declarations•, or on itself, on e may make several •mode­
d eclarations• like 

o~!E!!£! ~ = (ref ~ left, !~f ~ right), 
Q = (ref Q left, ref struct 

(!!! E-Iei~;-~~f b right) right) , 
c = (£~f d lef t, !~!~ righ~): 
d (ref ~ l eft , !~f f right) , 
~ (ref f l e ft, !~f g right)o , 

in which it is not immediately c l ear whether the modes specifie1 
by c~, E• £ 1 c!o and o~o are all different or perhaps whether 
some of them are the same. In fact, a close examination reveals 
that each of them specifies exactly the same mode. Each is 
merely a different way of thinking about the same kind of data 
structure. It might be thought that, because the human reader 
(presumably) has trouble in deciding that the five •mode­
indications• are equivalent, it would also be difficult ani 
expensive for the compiler. But this turns out not to be the 
case<t >. Thus, in large programs, perhaps written by several 
persons, each person may describe the basic data structure in 
his own way. If these are indeed the same, then the compiler 
will quickly find out about it. 

< t> See the papers of Koster [Ko], Goos (G] and Zosel [Z]. 
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10.7 Binary trees<t> 

We shall now consider some procedures for manipulating 
binary trees. These are data structures of the shape shown in 
figure 10.7.a. in which each "o" is called a "node" of the tree. 
At each node there are two branches a "left-" and a "right 
branch". In more detail, the value of each node is, as is shown 
in figure 10.7.b, a structured value with at least three fields. 
The first and last fields are references to the left and right 
branches, respectively, and the middle field contains some 

r---o---. 
I I 
0 ,---0 

I 
0 

0-----., 
I 

r---o---, 
I I 

.---o--, 0--, 
I I I 
0 0 0 

Fig.10.7.a 

r-o-T---~-----r-o-1 
r-to o I •attribute a 1 o ot-, 
I L-o-J-.-· ----------'--o-.J I 
I I 

Fig.10.7.b 

information, perhaps a string, 
particular node. 

which is an attribute of that 

The necessary •mode-declaration• would be 
cE!~~ct no~~= (f~± llQQ~ left, §!f!n~ val, ~!nod~ right)c. 

We may observe that the mode specified by D]~£~c is infinite, in 
the sense described in section 10.3 above. 

A binary tree is used for many different purposes. For an 
illustration, we shall use it to store and retrieve character 
strings in alphabetic order. 

10.8 Insertion in a binary tree 

Suppose that we are given three strings "jim", "sam" and 
"bob", in that order, and that we wish to store these in a 
binary tree such as that discussed above. Storing the first 
string would result in the structure shown in figure 10.8.a. 
After the second and third strings have been stored, the 

.--o-r---i--~0-, 
JoSoJ ajima Jo9oJ 
L-o-'--------'--o-J 

Fiq.10.8.a 

,.-o-r----i---~o-, 
,-to oJ ajima JO ot-, 
1 L-o-'-------'--o-J I 
I I 

r-0 t A --r-0-, r-0-r----'----r--O-, 
Jo&oJaboba Jo9ol Jo9oJ asam• Jo9oJ 
'--0-i-----'--o-.J '-o-'--------'--o-.J 

Fig.1 0. 8. b 

<t> For an authoritative discussion of binary trees, see Knuth 
(Kn] Section 2.3.1. 
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structure is that shown in figure 10.8. b. Note that the shape of 
the tree will depend upon the o r der in which the strings are 
encountered. Whichever string is stored first generates a node 
which becomes the "root" of the tree. The succeeding strings are 
then compared with those already present to determine whether to 
branch to the left or to the righ t. 

A procedure to insert a given 
root is referred to by arootc is as 

a££~£ insert = (§!~ing s, ~~! !~! 
ref ref node n := root ; 

s tring esc into a tree whose 
f ollows. 

while-(£~!-~2£~ : n) :1: ni! 
n := ( s < val Qf n 1 lef t 

( £~f £ef n21~ : n ) := gQg~ 
) a 

!lQQ~ root) 

do 
Qf n I right Q! n 
: = (.!!i! , s , .!!.!! ) 

Suppose that we start with a n 
•declaration• 

empty tree, i.e., the 

aref node tree := ni le 
and then elaborate--ihe--;call• aii;ert("jim", tree)c. The 

otreec 
--,-
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situation both before and after this • call• is shown in 
10.8.c and d. Observe that t he modes of both the 
parameter• aroota and the •actual-par ameter• otreeo 
same, viz., that specified b y a~~f £~! UQ£~a, so 

figures 
•formal­
are the 
that no 

coercion occurs when the parameter i s passed. 

- The •declaration• aref ref node n := . · ~plies that the 
mode of ana is that specified--by--~~~! ~~!m g~g~o. Since 
croota is of mode specified by ofef ~~f .!!QQ~a, the initializing 
assiqnment to cnc invokes no coercion. In the •assignation• 

c (£~! ~~! UQQ.~ : n) : = .!!QQ.~ := (.!!!.!, s, !!.i.!> a , 
the second occurrence of anodea is a •global-generator• 
generating a name of mode o~~f-yQg~c, to which is assigned the 
value of the •structure-display• c(.!!i.!. s, .!!i!)o. Because the 
mode of ana is oref ref ref nodeo, it must be dereferenced once 
before the new node-is-assigned:-This is the reason for the 
•cast• aref ref node : no. This •cast• is necessary. In fact, on 
:= nodeo--is-not-an •assignation•, for there is one •reference­
to-•-too many on the left. 
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If no v we elaborate the •call• cinsert ("sam" , t r ee)c, we 
have wha t is shown in figure 10.8.e. Here we have effectively 
elaborate d t he assignation en := right Q! no in g oing from 
figure 10.8.d to 10.8.e. In the •se lec t i on• aright Qf no, one 
has the a priori mode a£!! ref ~~! BQ1~a , but being in a weak 
position, it i s de r e ferenced (twice ) to a£ef llQQ~a. The a priori 
mode of aright Qf nc is thus o~~! £~{ nog~a, s ince the field 

atreea croota ana ana 
T 

atreec 
--,--

ar ootc 
~ -~- -~ T 

0 

: 
0 0 0 

0 0 0 0 0 

0 · 0 0 

I 
0 0 

L--->--o 0 0 0 

0 0 

.-J 
,.-o~-~o-, 
t oeo t•jim•IO ot>, 
L-o-L-----~-o-J I 

,.----l 
r-D-T-~-~0-, 

lo9ot •sam• toeot 
L-o~----~-o-J 

Fig.10.8.e 
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,.-o-r-~--~o-, 
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selected by aright of na is thus a name which refers to a name 
in a node. Since the mode of ana is aref ref ref nodec, the 
assign ae nt nov takes place without further-coercion~-This- moves 
one do wn the tree by one node. After elaborat i on of 
cinser t("bob", tree)a, we would have what is shown in figure 
10.8. f. 

10.9 Tree searching 

Ano ther process in tree manipulation is the s e archin g of a 
tree for a node which contains a given attribute. In the reach 
of the •declarations• of section 10.8, and of aref node m := 
n!!o, this would be accomplished by the following: --- - ---
DE~Q£ s earch = (~!£!~g s, ~~! ~~! nog~ root) EQQ! : 

( ~! re! ~QQ~ n := root ; 
whi le (£~! BQde : n) :#: n!! gQ 
i! s = val Q! n 
! he n m := n ; gQ_!Q done 
else n := ( s < val ~! n left Q! n 1 r i gh t Qf n ) 
fi ; fa!~~ 

done : trn~ 
) [J 

The value delivered by the •procedure• is •true• if th e node 
with string csa is found; otherwise , i t i s •false• . As a side 
effect, the node where the string occurs i s ass i gned t o t h e non­
local •variable• ama; otherwise, ama remai ns refe r r i ng t o •nil•. 
Using the t ree constructed in sec tio n 10 .8, t he result of 
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elaboration of the •call• csearch("sam", tree) c would result in 
the situation pictured in figure 10.9. 

The •variable• amo serves to remember where the node was 
found. In the •assignation• om := no, one is dereferenced twice. 
Note also that in the •formula• as = val 2! no, first one is 

o tree a orootc one cmc 
--T- -r- T T 

0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 

I 

I 0 0 

L--->--o 0 0 0 

0 0 

,---J 
r-0-r--~~-o-, o 

r-<to Olajimalo ot>-T<-o o 
I L-o-.1.----~-o-.J I 0 
I I 

,.-o-T---.1.---r--o-, 
I090I aboha 10901 

L-o-.1.-------.L-o-J 

,.-o-r----4---r-o-, 
I090I asama IOGOI 

L-o-.1.-------.L-o_J 

Fig.10.9 

dereferenced twice, then oval of no is dereferenced once before 
the comparison of strings is made. 

10.10 Searching and inserting 

The two processes just described are often combined into 
one. Thus we may wish to search a binary tree for a given 
string, to insert it if it is not there, and, in any case, to 
return with a knowledge of its position. This would be the kind 
of action necessary if the tree were being used as a symbol 
table for a compiler. A procedure to accomplish this might be as 
follows. 
E!Q~ searchin = (§!E!!!g s, !~! £~! !!Qg~ root) £~f !~f ~2g~ 

( E~f [ef !!2g~ n := root ; 

) [] 

while (ref ref node : n) :#: !!!.! QQ --I!-s :;;;-vai-Q~ YL 

!!!~!! 9:2_!Q done 
~ls~ n := ( s < val 2! n left Qf n I right Qf n ) 
t! 

(ref ref !!2g~ n) := !!2Q~ := <ni.!, s, n!.!> done :-; 
All the elements of this procedure have been seen already. It is 
therefore sufficient to remark that the value delivered ty the 
procedure is that of the one which follows the label adone :c, 
after this one has been dereferenced once. 
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10.11 Tree walking 

Another fundamental aanipulation with binary trees is known 
as a "tree walk". This is a process of visiting each and every 
node of the tree. Osually some action is to be taken at each 
node, e.g., printing its string, or counting the node. A tree 
walk is called a "pre walk", "post walk" or "end walk" (see 
Knuth [Kn]) depending on whether the action is to be taken upon 
first reaching the node, or between examining its left and right 
branches, or upon leaving the node for the last tiae. For 

,.~-, 

r--i B P---. 
I L--.J I ,.__._, ,.__._, 

I A I I C I 
L---.J L---.J 

Pig .10 .11 

example, for the tree displayed in figure 10.11, a pre walk 
would perform action on the nodes in the order B A C, a post 
walk in the order 1 B C and an end walk in the order A C B. 

We shall nov write a procedure for printing the strings of 
the nodes, in alphabetic order, by doing a post walk over a 
binary tree. This is a typical problem in which recursion 
provides a neat solution, which is as follows: if the tree is 
empty, then do nothing; otherwise, using an induction hypothesis 
that we know how to walk a tree with the number of nodes less 
one, first walk the left branch, then print the string, then 
walk the right branch. The procedure is as follows. 
ct1t E~Q£ post walk = (£~! ~2Q~ root) 

t U ( root : # : .!!!:.! 
t3t 1 post walk (left 2! root) ; 
t4t print (val ~! root) ; 
t5t post walk(right 2! root) 
t6t )c 

In lines 3 and 5, the •actual-parameters• cleft of rootc and 
cright Q~ rootc are dereferenced once. Note that an end walk is 
similar - merely interchange lines 4 and 5 (except for a; c). For 
the pre walk we interchange lines 3 and ~ (except for the cl c). 
For the tree discussed in section 10.8, the •call• cpost 
walk(tree)c should print its strings in alphabetic order. Note 
that the •actual-parameter• ctreec is dereferenced once. 

We may nov make this procedure more useful by generalizing 
it to perform a given action at each node. The action is in the 
fora of a •procedure• which is passed as a parameter. 
DE~Q£ post walk a= (~! £2~~ root, E£2£~~! EQ~~) action) 
~~g!~ pro£ g = (~~! EQ~~ r) : 

( r : 1: nil 
1 q (left -:Q! r) ; action (r) g (right 2! r)) 

g (root) 
~~~c 
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13-t"-Lo 

10.12 A non recursive approach 

The recursive solution to the tree walk froblem, given in 
section 10.11 above, is simple to program and easy to 
understand. When proving the correctness of programs, this is an 
important consideration. However, by using recursion, a certain 
price must be paid for this convenience, because the run-time 
organization may need to build a stack to remember the nested 
•calls• and this stack will require storage the size of which is 
unknown. In certain situations the programmer may not wish to 
pay this price. For example, he tlla.f be writing a garb.lge 
collection routine which must work well just when the amount of 
free storaqe is at a minimum. For this reason other schemes of 
walking trees are exploited (SW). We shall outline such a scheme 
here. 

The basic principle is that the tree is broken apart at one 
node, some of the names are reversed and three variables are 
used to keep track of where the break occurs. As we move the 
break down the tree, the names are reversed to refer to where we 
came from. As we move up the tree, the names are restored to 
their former state. Also, when we move from the left branch to 
the right branch of a node, it is necessary to shift the 
reversed name from the left to the right. The extra storage 
required consists of three variables ap, qc and oro of mode 
specified by Df~! fg! ~gg~c, and the existence of a boolean 
field in each node (or corresponding to each node) which 
remembers whether we have already moved across that node (i.e., 
whether the name which refers upward is on the riqht). The value 
of this field is initially •false •• 

to 
The •mode-declaration• given above is thus amended slightly 

astruct !!QQg 
<~~f ~gg~ left, §!fi~9-va1~ Q221 

The situation at some moment in moving down the tree is 

ego 

0 

0 0 

0 

0 

0 0---->----, 

apo 

0 0 
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pictured in figure 10.12.a. 

The steps in the process of moving down are 
o( r := left 2! q ; 
left .2! q : = p 

p : = g ; 
g.- r )o 
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after which the situation is as shown in figure 10.12.b. We nee1 

ego opo 

0 0 

0 0 0 0 

o o I 
I ,--o- T-------r-o-, 

0 0 L(tO OJ JO ot-)-1 
o o o o---->---, '-o-~---~-J..-o-J I 

o o .-----t-->--------J I 
I ,--0-r---L---r-o-, ,.-o-T---~---T-0-, 
I I o o I I c ot>, .-<to o I I o ot>, 
I L-o-...._ _____ -L_o-J I I L-o-J. ______ -J._o_J I 
L--)--, 

,.-o-r---J. ___ T-o-, 
.-<to o I I o ot>, 
I L-o-L-------~-o-J I 

Fig.10.12. b 

only add some way to stop this process. This is accomplished by 
the •condition• 

o (£~! B.QQ~ : q) :I: B!.!c 
one should also check that the process starts from the orooto 
correctly and works properly when o (I~f !!2~~ : q) :=: !!.!.J:o. 

When the walk on the left branch is done we must move 
across the node. The situation before is as in figure 10.12.c 

ego ope 

0 

0 0 

0 

0 0 

1 .----<-----o o--o o 
I ,.-o-r----~--r-r-0-, o o 

0 

L-o o>, 
o I 

L<to oJ JFto ot->-1 

L-o-~-------~-~-o-J 1 
I 

,--0-T----~--T-T-0-1 
.-<to o I I F I o ot>1 
1 L-o-...._------~-~-o_J I 

r-0-T ____ ....__T_T-o-, 
.-<to oJ tFJo ot> 1 

1 L-o-L-------~-~-o-J I 

Fig.10.12.c 

and the steps in the process are 
or .- q ; 

q := right 2f p ; 
right 2f p := left 2! p ; 
left 2! p .- ro 
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The si tu a t i on a f ter elaboration of thes e statements is as in 
fi qur? 10. 12. d . Now we perfor m the action a t this node and then 
r e me mbe r t ha t we have done so by 

cacticn(p) 
tag 2 ! p := !!~~c 

Th e process of mov i ng up the tree i s the o p posite of moving down 
the tre e exce pt tha t we must check whe ther we are done, 

c (!~f !!2£~ : g ) :=: rooto 
and whe ther we should chang e to mov i ng acr oss 

c -, ta g Qf pc 
~lso, as we move u p , t he va lue o f t he fl ag field is restored to 
• fal se •· 

opo 

0 0 

0 0--0 0---->----, 
o o r-O-r----~-r-r-0-1 I 

cq o 

0 

0 0 

0 

r-<-+o o I I Tl o o+>J 
I L-o-~-------~-~-o-J 

I 

0 

r<o o-J 
I o 

r-O-r----~--T-T-o-1 

r<+o o I I PI o o+>1 
I L-o-~-------i-~-o-J I 

r-0-r--~--T-T-o-, 

r<+o o t JFJo ot>1 
I L-o-i-------~-~-o-J I 

Fi g.10 . 12. d 

The com plete a lgo r ith m i s e xpressed as follow s: 

C£! Q£ wa lk= ( !~f ~QQ~ r o ot, E!2£ (!~! .!!2£~) act i on) 
Q~~ig ~~! .!!QQ~ p := root , g : = r oot, r : 

.if r o ot : ~: Bil 
th e n 
d"own : !!..h.U ~ cr~f n2£~ : q> =~: nil ao 

(¢see figure 10.12.a¢ 
r : = lef t Qf q : l e ft 2! q := p p := q 
q := r ¢ see figure 10.12. b¢ ) 

across : ¢see fiqure 10 .12.c¢ 
r := q : q := righ t 2! p ; righ t 2! p := lef t Qf p 
left 2! p : = r ; ¢s ee f ig u re 10 . 12. d¢ 
t a g Qf p : = !!.!!~ : acticn(p) 

if (!~! .!!QQ~ :g ) :~: nil !.h~~ down !i 
up : wh!l~ (f~f BOd~ : g ) :1 : root £2 

if t ag 2! P 

fi 

t he n tag o f p : = !~1~~ r := ri g ht Qf p 
~ight 2! p- := q ; q := p p : = r 
~J~~ across 
f i 

~!!.Q ¢Walk¢ 

a) 
b) 
c) 
d) 
e) 

10.1 Syntax 

Is 
Is 
Is 
Is 
Is 

D.!!!Qde real = 1 
D.!!!Qde a:-;-[ 1 :n 
Dl!!Q.Q~ ! = ( ]re 
0~!!12.!! ~ = (b) 
O.§?lf.\!£! !! = Ci 

10.2 Development 

a) In the reach of 0 
E!Q£ ~c, develop 

b) What is printed 
print(.!!EQ v) end 

c) Develop the •deci 
d) Develop the •decl 
e) Develop the •decl 

10.3 Infinite mo 

a) What are the two 
10.3? 

b) What are the thre 
10.3? 

c) Is the mode spe 
Q, Q = .§?!ruf!(a 

d) Build the list ;t 
e) Is o J!l!~ a : = ( 1 , 

10.4 Shielding a 

a) Is D!!!O shielded i 
b) Is Dl!!o shown in 0 

~ = [ 1 : 1 0 ]m, b = 
c) Can omog~ !-= ref 
d) can o.!!!21~ !l = -re: 

proper •progra;~ 
e) Can cmode m1 = 

b) • l!!J-;-Er:2£ <!!!1 : 

10.5 Identificat. 

a) Is 0 ( Q : U ) ~ VI 

10.6 Equivalence 

a) In the reach of 1 

specified by cao 
b) Are the modes spec 

~ = ~truct(ref a 
c) Simplify --the-- •me 

.§!~.£! Ci.!!! u, re J 
d) In the reach of-;; j 



as in 
then 

tg down 

Jr ed to 

An ALGOL 68 Companion 135 

Review questions 

10.1 Syntax 

a) Is D~Qde £~~1 = !Q~ i~~o a •mode-declaration•? 
b) Is o~Qde a = [ 1:n]£~alo a •mode-declaration•? 
c) Is o~Q.Q~ £ = [)!~ale a •mode-declaration•? 
d) Is o~nig~ ~ = (Q)D a •mode-declaration•? 
e) Is D.§~E~~.!: !! = (i!!.~ q, E~! s) o a •mode-decla ra tion•? 

10.2 Development 

a) In the reach of omode 
EIQ£ ~c, develop-the 

b) What is printed by 
print(!!£~ v) ~g~c? 

c) Develop the •declarer• 
d) Develop the •declarer• 
e) Develop the •declarer• 

10.3 Infinite modes 

~ = !~! Q ; ~Q.Q~ ~ = [ 1:n] in.!:. d 
•declarer• cstruct (a a, d d)c. 
DQ~~!g !Q~~-~-;-r 1:2] 1u1 : £~! ~ v 

DfEI!D in 11. 11.t of the Report. 
c!:EiE!~c in 11. 11.k €:9 the Report. 
D~EQfD in 11.12.w of the Report. 

= 

a) What are the two occurrences of c!!n!a on line 4 in section 
10.3? 

b) What are the three occurrences of cJinfo on line 6 of section 
10.3? 

c) Is the mode specified by c~c, in the reach of D!!!QQ~ ~ = I~t 
Q, Q = ~~ru£,!:(~ a)c, an infinite mode? 

d) Build the list structure shown in figure 10.3 from top down. 
e) Is o.J:!.~f a : = ( 1 I (2 I (3 I nil>)) D a •declara tion •? 

10.4 Shielding and showing 

a) Is D!D shielded in o[1:n]~.!:IY.£!(! a, in!: b)o? 
b) Is o~c shown in c.§!E~.!:(~~f ~a, Q b)o, in the reach of DillQ~~ 

~ = [1: 10]~, Q = EE~ ~c? 
c) Can omo.Q~ ! = I~t E£OC ~o be contained in a proper •program•? 
d) Can o~g.Q~ !1 = f~f ~£, ~£ = §.!:f!!£~(~1 f)c be contained in a 

proper •program•? 
e) Can omode m1 = union(m2, m3), !!!£=.§.!:£!!£.!:(£~!ill! a, [l:n]!!!.J 

b), ~l-;-E£2£<!!!.1)~-be-contained in a proper •program•? 

10.5 Identification 

a) Is c( ~: u ) ~ vo a •formula• or a •declaration•? 

10.6 Equivalence of mode indications 

a) In the reach of D!!!QQ~ ~ = r 1:10] ~h!!ID, are the modes 
specified by o~o and o§tr!n~o equivalent? 

b) Are the modes specified by D!!D and c~o, in the reach of D!!!Q~~ 

~ = ~.!:£!!~!:(!~! ~ x), f = f~! §!!~£!(Q x)o, equivalent? 
c) Simplify the •mode-declaration• D§.!:EY.~.!: !! = <in~ u, fgf 

struct(int u, ref a v) v)o. 
d) In-the-reach of-~§!£~~! ~ = (I~f ~ r, QQQb s), Q = (~QQb s, 
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ref a r)c, are the modes specified by c~c and DQD 
equivalent? 

e) In the reach of a§!E~! ~ = (!~f 1 a, i~! b), 1 (£gf ~ a, 
int b), m = (ref k a, int b)a, are the modes specified by 
~~;}a and-a~o equivalent?--

10.7 Binary trees 

a) In the reach of cmode nood = ref struct (nood 1, §!Ei~g val, 
nood r)c, does D~QQ~a-specify-an-infinite-mode? 

b) u~in~ dt most three statements, in the reach of the •mode­
declaration• for anod~c of 10.7, construct the binary tree 
of figure 10.B.b. 

10.8 Insertion in a binary tree 

a) Write, as one •assignation•, the equivalent of oinsert("rou", 
tree)c, for the situation in figure 10.8.f. 

b) For the tree as shown in figure 10.8.f, what is printed by 
cprint(val Qf left Ql tree)c? 

c) For fiqure 10.8.f, what is the value of c(£g1 ~Q~~ root) 
: = : no? 

d) For figure 10.8.f, what is the value of cleft Qf tree:=: nc? 
e) For fiqure 10.8.f, what is the value of cleft gf n ·=· ni!a 

and that of cleft Qf n ·=· (!~! ~QQg: .!!i1)c? 

10.9 Tree searching 

a) Rewrite the •declaration• of csearchc without using 
•completer•. 

10.11 Tree walking 

a 

a) Define a •procedure• cplc such that cp1 (tree) a will print the 
strings of a tree (see figure 10. 11) in the form 
((()A())B(()C())). 

b) Define a •procedure• cp2o such that cp2(tree)a will print the 
strings of a tree (see figure 10.11) in the form (A,B,C). 

13.12 A non recursive approach 

a) Alter the algorithlll of 10.12 from a post walk to a pre walk. 

1 1 Easy transput 
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11 Easy transput 

11.1 General remarks 

The transput routines of ALGOL 68 are written in ALGOL 68 
itself [R.10.5]. This means, in theory, that it is not necessary 
to explain any of them here. In order to understand what the 
transput routines do, we need only to act like a computer and to 
elaborate the routines of the Report. However, most of us prefer 
not to emulate a computer. For this reason, extensive pragmatic 
remarks are included in section 10.5 of the Report and some 
informal remarks on the simple routines, which would be used by 
a beqinner, are appropriately the subject of this chapter. 

The general philosophy is that no new language tricks are 
used. This means that what we have already learned about the 
language should be sufficient for the understanding of the 
transput routines. The transput does not depend upon exceptions 
or special cases. 

11.2 Print and read 

and 

The two most useful routines for the beginner are 
cprintc 

area de 
we have met them before in several examples in preceding 
chapters. The procedure cprinto is used for unformatted output 
to the standard output file (probably a line printer) and the 
procedure creado is used for unformatted input from the standard 
input file (probably a card reade~. Examples of their use are 

and 

cprint(x)c 
cprint ( ("answer.::.=!.."• i)) c 

cprint((new page, title))c 

cread(x) o 
oread ( (i, j)) c 

cread((x1, new line, y1))c 
oread((a, space, b, space, c))c 

An important point to notice is that both cprintc and creado 
accept only one •actual-parameter•. Thus cread(x, y)c is 
incorrect. The mode of the •parameter• of oprintc and creado 
begins with •row-of-•. This means that oread((i, j))c or 
oprint((i, j))o is acceptable since o(i, j)c is a •row-display•. 
Note that oprint((x))c is as good as oprint(x) o, for o(x)c is a 
•closed-clause• whose value is oxo and oxo will be rowed to a 
multiple value, a row with one element. 

Observe that, in addition to •variables• like oxc (and for 
oprinto, •constants• like c"answer.::.=.::."c), the •units• of the 
•row-display• (or the single •parameter•) may be certain layout 
procedures like ospace, backspace, new linec or cnew pagec, to 
allow for a rudimentary control over the standard input and 
output files. Thus cprint((new page, "page~10", new line, 
"name", space, "address"))c, should result in the following 
output at the top of a new page. 
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PAGE 10 
NAME ADDRESS 

11.3 Transput types 

In order to understand what values can be printed and read, 
we should examine the •mode-declarations• for the hidden 
•indicants• DQJ!!!IE~D and c!.!!!1.E~c [R.10.5.0.1.b,e ]. We call 
these "hidden" because, although they appear in the Report in 
the form c% ~l!!!IE~a and a~ i~!1.E~a, they may not be used 
directly by the programmer. They are present only for the 
purpose of description of the transput routines. If one is used 
by a programmer, then it wi ll be r e g arded as an •indicant• with 
no defining occurrence. 

The declaration of agy!!.I.E~D may be para phrased as follo111s: 
DQJ!!!IE~c specifies a union of the modes c!J!!, £~~1. ~QQlc and 
c~E~fo, together with prefixed a!gagas where applicable, and all 
multiple and;or st ructure d modes bui l t from these. Examples are 
c( Ua!. §!£i.!!.!l• £Q!!E!a and a[ ].2!.!!!£.! (!!!! n , [ ]QQQ! b1) a. Note 
that values of each of t he se modes are constants. 

If we consider a union o f the same modes as for OQJ!!!1.E~c, 
but each preceded by •reference to•, then we have the mode 
specified by o!a!y~a. Examples are D£~! i.!!!. E~! ~h!~· 
£~![ ]j.nt, £~! §!!!_!!g , £~1 ~Q~.E!c and aE~t[ ]§!fl!£!Ci!!! n, [ Th22! 
b 1) a . 

Thus, DQJ!!!IE~a is an a p propriate union of those constants 
which we might expect to pri nt and ci~!YE~o is a union of the 
corresponding •variables•. 

It is now perhaps conven ient, for ou r discussion, to 
suppose that there is a •mode-declaration• 

D!Q~~ .Ef!~!!Y.E~ = uni~.!!(QB.!.!Y£~, .E£Q£(!i1~)), 
re~Q~IE~ = .Y.!!i2.!!<i.!!!IE~ · EEQ~C!i!~))c , 

although such a •mode-declaration • does not exist in the 
•standard-prelude•. With this in mind, we may now say that the 
•parameter• of oprinta is of the mode specified by a[ )££i]!!.IE~D 
a nd that of oreadc is that specified by c[ ]~~~!!!YE~a. This 
means, in particular, that the axe in cprint(x)a ~i l l be 
subjected syntactica l ly to the coercion of dereferencing to 
c£~~1a, uniting to aE!in t!IE~D and then rowing to a[ ]££iE!!J.E~o, 
whereas in aprint((x, y))a, the last coercion is not necessary 
since a(x, y)a is already of mode •row of•. In aprint(new 
page) c, the onew pagea is of a priori mode O.E.fQ~ C!il~)a and it 
is united to D.Ef!~!!IE~a and rowed to o[ ]E£!~.!.!YE~a. These 
particular coercions are of little concern to the programmer 
except perhaps that their understanding helps to prevent such 
errors as cprint(x, y)a. 

11.4 Standard output format 

We shall now examine what to expect of the appearance of 
•constants• on the standard output file ostand outc as a result 
of a •call• of oprinta. For this purpose, the mode specified by 
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the hidden •indicant• osi!Eloy!cc (R.10.5.0.1.a) is relevant to 
our explanation. It is a union of the modes specified by c!.n.!, 
£~!!, £~11pl, ~gg!, £~~£0 and c~!£iggc together with prefixed 
cl~~gos, if applicable. we shall be able to understand the 
output appearance then, if we consider the action of cprinto on 
values of each of these modes in turn. 

We shall also need some assumptions about the environment, 
if ve are to give illustrative examples. Therefore let us assume 
that, in our environment, oint widtho [R.10.5.1.3.h] is •5•, 
creal widthc [R.10.5.1.3.i] is •7•, oexp widthc [R.10.5.1.3.j] 
is •2• and omax char(stand out channel]c (the line length) 
ra.10.5.1.1.m, 10.5.1.3.e] is a64a (the same as this text). 

With these assumptions then, the result of the •call• 
oprint((newline, iru~, !.~1§~, 1, 0, -1, 1.2, 

0.0, -.0034, "a", "abc", 1i2))c 
is 
1 Q +1 +0 -1 +1.200000E +0 +O.OOOOOOE +0 ~ 
-3.400000E -3 A ABC +1.000000E +0 1 l +2.000000E +0 .~ 
The value -3.400000E -3 was printed on a new line becaus€ there 
was not enough room on the first line. Note that an integral 
value occupies 6 (oint width + 1o) print positions, a real 
constant 13 (creal width + exp width + 4o) print positions, a 
complex value 28 and a boolean or a character value 1 each. Also 
each of these is separated from the previous one by a space, 
unless we are at the beginning of a line. 

~ultiple values are also included in the united mode 
specified by DQ~!.!I£~o and therefore multiple values may be 
printed. For example, in the reach of [ 1:3 Ji!!i u1 = (1, 2, 3) o, 
the result of oprint((ul, 4))o is 

+1 + 2 +3 +4 
Also, in the reach of o[1:2, 1:2].!g_t n2 ((5, 6), (7, 8))c, the 
result of oprint(n2)o is 

+5 +6 +7 +8 
Actually, the description of cprinto [R.10.5.2.1.a,b] indicates 
that each of the •units• of a •row-display• c (a., b, c, d) c in 
cprint((a, b, c, d))o is first "straightened" (unravelled) 
[ R.lO. 5. 0. 2. c] to a value of mode specified by c[ )§i.!!!£12~!c and 
each of the elements of each of these straightened rows is then 
printed with the standard format discussed above. This means, 
for example, that the on2c in cprint (n2)c, given above, is, 
within the •procedure• oprintc, straightened from oQgii~]~c to 
c[J~i!!!.~2.!!ic [R.10.5.2.1.b, 10.5.0.2.a]. Thus, all multiple 
values and all structures (except for afQ!!J?bc and c§iii!!.9D, 
which are already in c§i!!!.£12.!!-ta) are straighten€d to 
c(l~!!£1Qutc before printing. 

The exceptions for o~i£!.!!gc and DfQ.!!!£!n are that, although 
c2tr,i!!go has the mode •row of character•, the result of 
cprint("abcd")o is ABCD and not A B C D, which would be the case 
if it were treated like other multiple values, and oprint (1.2 .! 
3.4) c gives 

+1.200000E +0 J+3.400000E +0 
rather than 
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+1.200000F. +0 +3.400000E +0 
which would be the case if it were treated in the same way as 
the other structured values. 

One final point is that the appearance of the result of 
cprint(x) ; print(y)c is exactly the same as that of cprint((x, 
y))c. In particular, each •call• of cprintc does not start the 
output on a new line. A new line is started only when there is 
not enouqh room on the old line or when one of the layout 
procedures anew linea or anew pagec is called. 

11.5 conversion to strinqs 

For those who find that this standard format does net meet 
their needs, there are a few •procedures• which allow for some 
form of simple control over the appearance of the output, 
without resorting to the use of formats. These procedures 
convert integer or real values and their long variants to 
strings. They are oint string, real string, dec stringc and the 
same preceded by clongos, if applicable [R.10.5.1.J.c,d,e). 
Thus, if it is desired to print the integral v~lue a25a using a 
width of three print positions, this can be done by 

cprin t (int string (25, 3, 10)) c 
The second •parameter• of oint stringc is the string length and 
the third is the radix. The •call• 

cprin t (int string (25, 3, 8)) c 
would yield +31, because 25 = 3 * 8 + 1. Fer real values the 
value of creal string(3.14, 10, 3, 2)o is a+3.140E~OO• and the 
value of cdec string(3.14, 10, 3)o is a+00003.140a. In both 
•procedures•, the second •parameter• is the length, the third is 
the number of digits to the riqht of the point, and for creal 
stringo, the fourth •param~ter• is the length of the exponent. 

Notice that the value of 
a+0000025a, so that those who 
either accept what they get from 
output. Another possibility is to 
by defining a •procedure• like 
supp zeroc [R.10.5.2.1.q]. 

11.6 Standard input 
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The philosophy for unformatted input is that any reasonable 
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and their long versions like a~~! !Qng £~~!a and so on. For 
convenience let us suppose that this union is specified by 
D§!!:e!!na. We shall need to consider each of these modes in 
turn. 

In the reach of a!~! i, !Q!!g int lia, the •call• aread((i, 
li))a would be satisfied by two •integral-denotations• like 

3 -2 
or 

+ 304 0000005 
The •procedure• creadc looks for the first non blank character 
from the current position on the input file and interprets what 
it finds as a value of the required mode. It allows for the 
possibility that, in the case just cited, there will be two 
•integral-denotations• with zero or more blanks between the sign 
and the first digit, if a sign appears at all, but that no 
blanks may appear between the digits. Note that the same set of 
characters may be presented for ai!!!D as for c!Q!!~ iB!c (a 
•long-symbol• is not used). 

In the reach of D£~~! x, .!Q!!g re~! lxa, the •call• 
aread((lx, x))c would be satisfied by 

2 3.45 
or by 

6. 789 e + 2 .00003 
or by 

123-4.56 
Note that the values on the input file need not necessarily be 
separated by blanks or commas, although most people would 
naturally do this • 

In the reach of D£Q£E1 z, bog! ba, the •call• aread((z, 
b))a would be satisfied by 

3.456 e -3 ! + 7.69 1 
or by 

.000345!6Q 
Observe that although creadc will widen from cinta to c£~~!a, 
when necessary, there is here no widening from ~ii~~ or crealc 
to D£Q£EJc. If the •variable• to be assigned to is of mode of~~ 
£Q!.E.!c, then it expects two values acceptable as a~~.!c and 
separated by a •plus-i-times-symbol•. 

In the reach of a£~~£ cc, cread(c)c merely reads the next 
character from the input file and assigns it to cca even if that 
character is a blank. In the reach of c[1:10)£~~I c1c, 
aread(cl)a will read exactly 10 characters, including blanks, 
and assign these to ac1a. If however, we have c(1:3 fl.§!]£B~I 
cf1a, then cread(cfl)a reads characters until it finds the end 
of line or one of the characters which belcngs to the string 
cterm Q! stand ina [R.10.5.1.mm], whereupon the preceding 
characters are taken to be those to be assigried to ccf1c. 
Whichever bound is flexible is then adjusted suitably. If both 
of them are flexible, e.g., in the reach of a[O !1~~: 0 
!l~!]£h~£ sillyc, the •call• cread (silly) a will result in a 
lower bound of •1• for asillyc. The programmer may specify the 
terminators as for example in cterm Q~ stand in := "?!"a, which 
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changes the set of terminators to"?" or"!". 

For multiple and structured •variables• in the union 
oig!!E!n, the first step is to straighten to o[ ]§i~El!no, where 
D§!~E!ino is the union of modes discussed above. Thus, in the 
reach of o[ 1:3, 1:2]£g~1 x2, §!£]£!(!E! a, QQQ} b) co, the 
•call• oread((x2,c)) o would be satisfied by 

3.1 .6 4.2 .7 SQ. 

11.7 String to numeric conversion 

The •procedure• oreado must of necessity convert character 
strinqs to integral or real values, and in doing so it makes use 
of three standard •procedures•, cstring int, string decc and 
ostrinq realc [R.10.5.2.2.c,d,el. These •procedures• are not 
hidden. The programmer ma y use them himself. The first 
•procedure•, ostring into, converts a given string to an 
integral value. It assumes that the first character of the 
string is a sign. Any character which is not a (hexadecimal) 
digit, e.g., a space, is treated as a 0. Thus the value of 
ostring int ("+~~23", 10)c is •23• (the second parameter is the 
radix). The •procedure• cstring decc converts a •variable-point­
numeral•, e. g., c"+2.3450"c, to a real value and ostring realo 
converts a •floating-point-nume ral•, e.g., o"+ 2. 345e-2 11 c to a 
real value. The value of cstring dec ("+2.345")o is •2.345• and 

· that of cstring real( 11 +2.34 50e- 1")n is •.2345•. These 
•procadures•, although ava i lable, are not likely to be useful 
for input since creadc itself has all the flexibility needed. 
However, thay may well be used for internal manipulation of 
strings. 

Another •procedure• which may be mentioned here is cchar in 
stringc (R.10.5.1.2.n]. It has three •parameters•; the first is 
of mode •character•, the second of mode •reference to integral• 
and the third of mode •row of character•. The •procedure• 
delivers a boolean value which is • tr ue• if the character, which 
is the first •parameter•, is fou nd i n the string, which is the 
third •parameter•, in which case i ts position is assigned to the 
•integer-variable•; otherwise, t he value delivered is •false• 
and no assignment is made. rhe result of •char in string ("+", i, 
"x~+~y")c is therefore •true• and the value •3• is assigned to 
cia. 

11. 8 Simple file enquiries 

For any file, it is possible to make simple enquiries 
concerning the current position in the file. There are three 
•procedures•, cchar number, line numberc and opage numberc 
fR.10.5.1.2.v,w,x], each yielding an integral value, the three 
coordinates of the cbookc. In the case of the standard input 
file, the •calls• ochar number (stand in), line number (stand in) o 
and opage number(stand in)o should each yield the value •1• 
after the •call• cread ((c, back space))c, if this is the first 
call of oreado and is in the reach of cchar co. Notice that 
these •procedures• deliver integral values ~i~- not names, so 
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that they are for enquiry only and cannot be used to alter the 
position in the file. 

There are also three •procedures• cline ended, page endedc 
and ofile endedc [R.10.5. 1.2.h,i,j], each of which delivers an 
appropriate boolean value, but a careful distinction must be 
made between cfile endedc, which tests whether the maximum 
capacity has been exceeded, and clogical file endedc 
[R.10.5.1.2.k], which tests whether the usable information in 
the file has been exhausted. In the case of the file cstand inc, 
if it is a card reader, then cfile ended(stand in)c is likely 
always to be •false a, but clogical file ended (stand in) c may 
become atruea· each time we reach the end of the data for a 
particular job. The •call• clogical file ended(stand out)c will 
always yield afalsea, because cget possible(stand out channel]c 
[R.10.5.1.1.j, 10.5.1.3.b] is likely to be afalsea, i.e., cstan:l 
outc is not an input file. But cfile ended(stand out)c may well 
become true when the page limit for a particular job is reached, 
or when the box of paper is exhausted. 

11.9 Other files 

It is worthwhile noticing now that cprint(x) a is the same 
as cput(stand out, x)c and cread(x)o is the same as oget(stan:l 
in, x)o; in fact, this is the way that cprintc and areadc are 
defined [R.10.5.2.1.a, 10.5.2.2.a]. This means that if another 
file is available, say in the reach of the •declaration• o!!l~ 
fc, then what we have said about unformatted transput on the 
standard files applies also to the file cfc by using, e.g., 
cput(f, x)c and oget(f, x)c. Such files must be opened (and 
closed) by the programmer, but this is the subject matter of 
another chapter. 

Another standard file which is always available, i.e., is 
opened automatically, is ostand backo. This file may be used for 
saving intermediate results during the elaboration of a 
•program•. When the elaboration is completed, this information 
will be lost, since the file is locked [R.10.5.1. ii, 10.5.1.2.t] 
by the •standard-postlude•. The two relevant •procedures• here 
are cwrite binc and cread bino. The mode of the •parameter• of 
cwrite binc is a[ ]Q_ytt1E~o, and that of cread bino is 
c[ l!!!!:YE~o. For example, in the reach of c[ 1: n lr~al xlc, if we 
want temporarily to save the values of a rather large array, 
this could be accomplished by the •call• cwrite bin(x1)c. The 
array can th e n be recalled by cread bin(x1)c. If another file, 
say ofc, is available, the same could be done by oput bin(f, 
xl)o and cget bin(f, x1)o, and if the file cfc is not lock e :l 
then thes e two •calls• might appear in different •programs•. 

Review questions 

11.2 Print and read 

a) Is cprint (new page, new line) a a •call•? 
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b) Is aprint(~i!)c a •call•? 
c) What is the result of aprint(get possible(stand in 

channel])c? 
d) In the reach of cref real xx := .loc £~~1 : = 3.14a, what is 

the result of aprint(xx)a? 
e) In the reach of are! £_g~! xx := .loc £_g!! := 3.14c, llhat is 

the result of cprint(£~! £_g!!: xx)a? 

11.3 Transput types 

a) what is the result of cpri nt (!Q!; i !1I 2 to 10 QQ 3)a? 
b) Can anile be coerced to a[ ].E£.!!!!.!Y.2~a? 
c) In the reach of 0£~! !:~~1 xxa, can cxxc be coerced to 

·a[ ]!:~.2Q!I.2_go? 
d) In the reach of a§!E.!!f!(!;~! £ next, i.!!! n) s :.: <nil. 2) c, 

what is the result of cprint (s) c? 
e) In the reach of a!,Q~.2! fa, is oread (f) c a •call•? 

11.4 Standard output format 

In the following, assume the same environment as given in 
section 11.4. 

a) What is the result of cprint(("?", int llidtb))a? 
b) What is the result of cprint(("?", space, "abc~)? 
c) In the reach of cref real xx := lac real := 3. 14o, what 

coercions occur to cx'ic in-cprin t ( ("?"-;- xx))c and llha t is 
printed? 

d) How many real values can be printed on a line? 
e) How many integral values can be printed on a line? 
f) Is the result of cprint(("a", "b", "c"))c !BC or ABC? 
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Answers to review questions 

1.1 a) It ends with •symbol•. b) rhree, •label-symbol•, 
•cast-of-symbol• and •up-to-symbol•, unless one observes that 
the •label-symbol• is in italic, and the other two in normal 
type. c) Yes, e.g., o.o, which represents a •point-symbol• and a 
•completion-symbol•. d) It is a representation of the •open­
symbol•, but, by extension 9.2.g, it may be used in place of 
cf c. 

1.2 a) An internal object which is a real value. b) A 
•real-denotation• (amonqst other things). c) It is an external 
object. d) D~£Y~D possesses •true •• 

1.3 a) No. b) Yes. c) Ho, it is an internal object. d) No, 
i.e., not at the same time, but in the course of time - yes. e) 
No. 

1. 4 a) No. b) Yes, a •collateral-declaration• [R. 6. 2. 1.a ]. 

1. 5 a) rhere are four classes: integral 
values, truth values and characters. b) Yes, the 
c) The mode. 

values, real 
truth values. 

1.6 a) The mark ": 11 is read as "may be a", ";" as "or a" 
and 11 , 11 as "followed by a". b) Yes. 

1.7 a) Yes, e.g., o123o and o000123o. b) No, but it is a 
•formula•. c) Yes. d) No, not if this value would exceed cmax 
intc [R.10.1.b]. 

1.8 a) Yes, e.g., possibly o2.34o and c23.4e-1o. b) No. Oh, 
please no. c) No. d) Yes. e) No, but it is a •formula• [R.B.4]. 

1.9 a) No. b) Yes. 

1.10 a) Infinitely many. b) As many as he likes, but always 
a finite number. 

1.11 a) No, it is a •character-denotation•. b) Yes. c) •row 
of character•. 

1.12 a) No ( R.2.2.3.1.b ]. b) •structured with row of boolean 
field letter aleph•. c) •format•. 

1. 13 a) •row of character•. b) •reference to real•, 
•reference to integral• c) No. d) Six. e) No. 

2.1 a) No. b) Yes. c) c_E~! !!'!! [ ]£h~£D. d) Yes. e) Yes. f) 
No. g) No, except for •nil•. h) No, a •declarer• specifies a 
mode. 

2.3 
No. 

a) Hone. b) 

2. 4 a) Ho, but 
value. b) Yes. c) Ia. 
time, but in the cout 

2.5 a) Yes, but 
No, but the value r 
be changed. d) c!Q£[ 1 

2.6 a) No. b) Ye 
to-reference-to-integ 

2.7 a) Yes. b) y , 

2.8 a) oref ref 1 

!Q£ £~~.!. ~! !~~!-r ; 
£~!!! y ®. loc !~~! := 
o+o has 1ts usual me~ 

2.9 a) No. b) Ye~ 

2.10 a) Yes. b) 
reference-to-real•. f) 

2.12 
No. 

a) The eye if 

2.13 a) the one is 
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•expression• may posse: 

3.2 a) No. b) Fiv• 
call• and •void-cas~ 
COS (X + pi/2) , COS, X, 
depending on the mode c 

3.3 a) ol, ca, ft 
of-integral•. d) Yes. e 

3. 4 a) Yes. b) Yes 
c) Yes. d) Yes. e) a35, 

3.5 a) No. b) res. 

3. 6 a) The same as 
value •true• only vhe 
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2.3 a) Hone. b) aloe £hare. c) o!Q£ ~Q2!c. d) Ho. e) No. f) 
No. 

2.4 a) Mo, but it possesses a name referring to a real 
value. b) Yes. c) Ho. d) No. e) Ho. f) No, i.e., not at the same 
time, but in the course of time - yes. 

2.5 a) Yes, but not the saae instance [R.2.2.1 ]. b) No. c) 
No, but the value referred to by the name possessed by cxo may 
be changed. d) o!Q£[1:3]E£~£ !~~!o. 

2.6 a) No. b) Yes, in the extended language. c) •reference-
to-reference-to-integral•. d) o[1:3]~Q£ £~~! po • 

2.7 a) Yes. b) Yes. c) Ho. d) Ho. 

2.8 a) cref £~! real xx = !~£ !ef £~!o. b) ofef £~~! x = 
!2£ !~!, ~! !~~! Y = lof ~~!o. c) D£~{ £~al x = !Q£ f~~!. !~{ 
!~~! y ® loc !~~! := 3.14a. d) It is not possible; moreover, if -
o+o has 1ts usual meaning, then this is not a •declaration•. 

2.9 a) No. b) Yes. c) No. d) Yes, but a rather foolish one • 

2.10 a) Yes. b) Yes. c) No. d) ay + 2o. e) •reference-to-
reference-to-real•. f) No. 

2.12 a) The eye is dereferenced and the o3.14o is not. b) 
No. 

2.13 a) the one is an •integral-aode-identifier• but the omo 
is a •reference-to-integral-mode-identifier; i.e., one is a 
•constant• and oma is a •variable•. c) No. 

2.14 a) Four. b) Both capo and ampa are dereferenced. c) It 
is equivalent to aj := j + 1o. d) Yes. amio. It's mode is •long­
real•. e) •reference-to-long-real•. 

3.1 a) No. b) Yes. c) c (a + (b Q! (c( d)))) - eo. d) An 
•expression• may possess a value but a •statement• cannot. e) Yes. 

3.2 a) No. b) Five, •mode-identifier, denotation, 
call• and •void-cast-pack•. c) oa[i], a, i, c, sin(x), 
cos(x + pi/2), cos, x, pi, 2o. d) Ho. e) It could be 
depending on the mode of oao [R.9.2.g]. 

slice, 
sin, x, 
either, 

3.3 a) cl, ca, fo. b) •reference-to-real•. c) •rov-of-rov-
of-integral•. d) Yes. e) Jo. 

3.4 a) Yes. b) Yes, its mode is •reference-to-row-of-real•. 
c) Yes. d) Yes. e) o35, item ~! a, i + n * 2, i +:= 2o. 

3.5 a) No. b) res. c) No. d) res. e) Yes. 

3.6 a) The same as that of o(2,3)o. b) It possesses the 
value .true• only when ox2( 3,1] = x2[2, 1 ]c. c) •2•. d) •2•. e) 
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No, because ci := lc is not a •tertiary• and therefore not a 
•lower-bo und•. 

3. 7 a) Yes. b) No, it is a •deprocedured-coercend• 
[R.8.2.2.1.a]. c) No, but ccos((x > 0 I x 1 pi/2))c is a •call•. 
d) When the mode of cac is •procedure with ~1 parameter 
reference to M2• where •M1• and •M2• are terminal productions of 
MODE. e) When the mode of ca c is •procedure-w i th-M1-parameter­
procedure-with-M2-parameter-M3•, i.e., cac is a •procedure• with 
one •parameter• which delivers a •procedure• with one 
•parameter•, and the mod.es of cbc and oco are •M1• and •M2• 
respectively. 

3.8 a) Yes. b) No, c (: x) c has no mode. c) Yes, provided 
that the mode, after soft coe rc ion, of oxc is •reference-to­
procedure-void•. d) Yes. e) No ( R. 8 . 2 . 3.1 ], but DE£2~ p := (: x 
:= 3.14)c is a •declaration•. 

3.9 a) No. b) Yes. c) No. d) Yes. e) When the mode of cbc 
is structured, has a field se lec ted by cac whose mode is 
•reference- to-M1• where •M1• i s the a posteriori ~ode of ceo, or 
when cbc is a •variable• a nd will refer to structured values 
that have a field selected by cac whose mode is M1. 

3.10 a) No. b) No, it is a •field-selector• (R.7.1.1.i]. c) 
ca 2f (bfc)), e Q!(g(x))c. d) No, o( a Q! b )cis not a •field­
selector•. e) Yes, it could be. 

3.11 a) Yes. b) afalse• (if t he value of obits widtho is 
a3a). c) a-4•. d) No, the lef t •operand• of the •operator• 
c+:=c, as declared in the •standa r d-prelude•, must possess a 
name. e) •falsea. 

3. 12 a) 
d) No, DE~Qc 

No. b) No, oi := i + 1o is not a •tertiary•. c) No. 
(:random)o is. e ) It is an •assignation•. 

3.13 a) afalsea. b) atruea . c) a truea. d) No, o3.14c does 
not possess a name. e) Yes. 

3.14 a) No. b) It looks li ke one, but o3.14o cannot be 
strongly coerced to an i ntegra l value. c) An •identity­
relation•. d) No, because c[1: 1]E~~Jc is not a •virtual­
declarer•. e) No, c!ef in! : i i c is not a •tertiary•. 

3.15 
None. 

a) None. b) Eleven. c) A •constant•. d) 

4.1 a) The same as that of o3 i Oo. b) No. c) 
e) Yes. f) Yes. 

•real•. e) 

No. d) Yes. 

4.2 a) •5•. b) Some undefined integral value. c) •11a. d) 
c!! p then a elsf q !Q~! r 1E~n b ~1se c !!c. e) c( a I ( b I = 
I ( d I e-~-~!!E-))J ~!iE )c. 

4.3 a) No. b) cif, £~2~c and c (c. c) •4•. d) •2•. e) No. 

4.4 a) llo. b) 1 
often, or until a j u 
it. d) Yes, zero 
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The last three 
occurrence, but the 
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:= 2 ; s . 1: n := 1 

4. 8 a) Seven. 
•reference-to-integr 
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2 *-randomo. d) aE!Q 
b )o. e) cpro~ recip 

5.2 a) No, unl 
operation which deli 
= X + 1, ~! b = f 
a ) o. e) • (int n = s 
!~~! ( n <-; 1 a1( 

5.3 a) The valu 
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not a call, since cr 
declaration•. e) •2~ 

5.4 a) c~!Q£ 
but in most applicat 
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11.11 a) llo. b) llo. c) Yes, oea is elaborated infinitely 
often, or until a jump occurs to a •label-identifier• outside of 
it. d) Yes, zero times. e) Yes, zero times. f) The second and 
third occurrences of cia identify the first, but oi := 2 * i + 
1o is not an •assignation• since aio does not possess a name. g) 
The last three occurrences of oio identify the second 
occurrence, but the third and fourth occurrences identify the 
first occurrence. 

11.5 a) Yes. b) No. c) Yes. d) Ho. e) No. f) No. 

11.6 a) lio. b) l!lo. c) No. d) The same as that of o"abcde"o. 
e) Yes, e.g., if the order of elaboration happens to be cj +:= i 
; i + := jc. 

4.7 
:= 2 

a) Yes. b) Yes. c) No. d) Yes. e) o( x Qf 1 I 1) 
s • 1: n : = 1 ro. 

4.8 a) Seven. b) •reference-to-row-of-in tegr al•. 
•reference-to-integral•. d) Four. e) None. 

n 

c) 

5.1 a) No, D!~~! J!!Q.fD is not a •declarer•. b) No, c (fg!!l 
a)f~~!o is not a •virtual-plan• [R.7.1.1.x]. c) DJ!£Q£ ~~~! r2 = 
2 * randoma. d) DE!Q.f max = (~! a, b) ~~~! : ( a > b 1 a 
b )a. e) apro£ recip = (£~! £~!!! a) : a := 1 1 ac. 

5.2 a) No, unless a*a has been redeclared and possesses an 
operation which delivers a name. b) D£ef[ ]!~!!! x1a. c) D(f~~! a 
= x + 1, ~! b = y ; a* b )o. d) D(£~!!! a= ~~il! ; ~~~!: a* 
a )o. e) •(!B~ n = ~~!J!, !B! m =~~!I! ; ~~.f[1:n]f~~! a1 = 2!!E 
f~~! ( n < 11 1 a1[n] 1 a1[a])) •· 

5.3 a) The value is voided. b) •4.6•, in the sense of 
numerical analysis. c) That of aye. d) The object ap(x, y)c is 
not a call, since Df~! re.f ~! a = xa is not an •identity­
declaration•. e) a2.2•, in the sense of numerical analysis. 

5.4 a) a~f~£ p = I!~! a, E!Q£ r~t in~ b) : b •:= 2 * aa, 
but in most applications DE£~ p = (in! a, £~! in! b) : b •:= 2 
* aa vould be sufficient. Note that since abo is passed by name 
in ALGOL 60, the side effects of ab := b * 2 * aa occur twice 
but in ab •:= 2 * aa they occur only once. 

5.6 a) A •constant•. b) Because 
osa. c) Because ago is a •constant• 
•variable• in its last •paraaeter•. d) 
for it is used only in the •formula• at 
that of alll.QQOOQa. 

no assignment is made to 
and agrowa requires a 
It's value is irrelevant 
Q! ~ta. e) The same as 

6.1 a) A priori mode, a posteriori mode and syntactic 
Yes. d) No. e) position. b) Strong, firm, weak and soft. c) 

Widening. 

6.2 a) Eight. b) Dereferencing and widening. C) 
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Dereferencing and deproceduring. d) Rowing. e) Eipping. 

6. 3 a) Dereferencing (four times). h) Dereferencing (twice) 
c) Dereferencing, dereferencing and deproceduring. d) 
Dereferencing, deproceduring and dereferencing. e) B34a, 71b ,c, 
61e, B1a,b,c,d, B20d, 822a, 860a, 41b,c, 302b. 

6.4 a) Deproceduring and uniting. b) No. c) A routine. d) 
No. e) No, crandomo is of a priori mode • proced ure-real•, it 
cannot be procedured to •procedure-void• (R.8.2.3.1 ]. 

6. 5 a) No. b) Hipping. c) Widening of c5c. d) Deproceduring 
and rowing. e) None, this is not a •cast• since rowing cannot be 
followed by uniting [R.8.2.4.1.b]. 

6. 6 a) Dereferencing and deproced uri ng. b) Firm. c) weak. 
d) Dereferencing of crr1xc twice (not thrice). e) Soft. 

6.7 a) •Base, cohesion, formula, confrontation•. b) cb, a 
2! b, x, 2, x := 2, x, y, 3, y + 3, x := y + 3c. k=-T Yes, but it-s­
~1~&-a r a t:i: on hl- \iBdefined-s iflce t he de£eferencing of a •nih.il• is­
~ adefined (R 8.2.1.2 Ste~ 2]~ d) Yes, assuming the •declaration• 
cf~i fea± xxc. e) No, hipping cannot occur in a soft position. 
c) o~:=_·_o I,.. ~o-·~~. ~ a!!!n...;,w.l\r"'- ·~-~-u.c..U:-. 
6.9 a) 834a, 71b, 421b,c, 61e, 81a,b,c,d, 820d, B25b,a, 
B21a, 860a, 41b, 302b. b) No, there is no deuniting coercion. c) 
74a, 54e, 71b,w,aa,z; 41b, 302b; 74b, 61e, 81a, B20d, B23a, 
830a, 834a, 71z; 61e, 81a, 820d, 828a, B30a, 831a,b, 81b,c,d, 
820g, 860a, 41b, 302b; 831c, 61e, 81a,b,c,d, 820d, 825a, 860a, 
511a, 303c,d. d) 61e, 81a,b,c,d, 820d, 828b, 822a, 860a, 41b,c 
302b. e) No, hipping cannot occur in a firm position. 

6.10 a) No. h) Yes. c) •real•. d ) •real• or •procedure real• 
or •union of integral and rea l • or •union of integral and real 
and boolean• etc. e) No. 

6.11 a) No. b) cpxc is softl y deprocedured and oxxc is 
strongly dereferenced. c) opxc is s oftly deprocedured and cgQ_!Q 
ko is strongly hipped to •reference-to-real•. d) Yes. e) No. 

6.12 a) cx1c is weakly coerced, c2o is strongly and 
then rowed to •row-of-real•. b) Yes, strongly-weakly 
c) Yes. d) Yes. e) orandomo is strongly deprocedured 
and cO i 2o is weakly coerced. ~cwJ._.:.to.._,.DIW'Iie., 

• ~~ ·""0~ 

6.13 a) No. b) No. c) Yes, firmly-strongly. d) Yes. e) No. 

6.15 a) Yes. b) Yes, the balanced mode is •reference-to­
real•. c) No, it cannot be balanced. d) c4 i 5.6o is firm, the 
others strong. e) No. ~ ..4 ~a...tL.I'\.~X~Ib A>A· 

6.16 a) The obje-~m +:= 1o is interpreted as om := m + lc 
so omo is dereferenc,~o~ce, om +:= lois dereferenced as the 
left operand of o>oA b) This is equivalent to D£!! !D! cl = 12£ 
int := am := abs amo. First came is dereferenced to •integral• 
and the absolute value of this integer is found. It is assigned 

to came. Then a nam 
cam := abs amo is 
to by cam~ is assi 
possess the name. 
same name as that p 
repetition of the 
occurrences of caic 
d) This is the 
FORTRAN program. It 
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to oamo. Then a name is created by o!Q£ i~1c, the •assignation• 
cam := ~bs amo is dereferenced and the integral value (referrei 
to by oamo) is assigned to this name. Finally oc1o is made to 
possess the name. c) The identifier oaio is made to possess the 
same name as that possessed by oa[ i ]o. This happens for each 
repetition of the repetitive statement, in which there are five 
occurrences of oaio, thus saving time on subscript calculation. 
d) This is the position of the statement number 30 in the 
FORTRAN program. It is redundant in ALGOL 68, but ol30: gEQD is 
not permitted for there is no empty statement. e) 1 

7.1 a) Yes, its value is •false• [R.7.1.2.c Step 8]. b) 
Yes, but rather useless. c) •true•. d) Yes. e) Yes. 

7.2 a) No, •integral• mode cannot be united to •union of 
character and boolean•. b) No, in R.8.2.4.1.a, •strong• goes to 
firm, so the o1o cannot be widened. c) Either •real• or 
•boolean•. d) Yes, and its value is •false•. e) Yes, provided. 
that it is in the reach of a suitable declaration of the 
•operator• o+o. 

7. 3 a) •true•. b) afalsee. c) etruea. d) Yes. e) No, ex :: = 
xo is not a •tertiary• [R.8.3.2.1.a] • 

7.4 a) Yes, its value is •false•. b) Yes, its value is 
•true•. c) Yes [R.4.4.3.c,d]. d) Mo. e) D.E~Q£ sqirt -= (!!!! 
i) l!!!.!Q!!. (int, !:~~!) (£eal x = sqrt (i) i~1 j = ~QJ!!!.~ x ; ( j * 
j = i 1 j I X ) ) o. 

7.5 a) •4•. b) Either •7• or .a. or •9• ( R.10.4.2 ]. c) No, 
it should be o~g~~ p = /1o. d) Yes, surprisingly, and if the 
value of ouo 1s of •boolean• mode, then the value of the 
expression is that of oho. e) No, because a •skip• can only be 
hipped and must therefore be in a st.rong position. ·rhe right 
•tertiary• of a •conformity-relation• is of no sort 
[R.8.3.2.1.a]. f) No, a •jump• can only be hipped (see the 
answer to e). 

8.1 a) No, it is a •confrontation•. b) Yes. c) o(x + (-y)) 
(( - ( - (ab~ i))) over 2) o. d) Nine. e) No, it is a 

•confrontation•. f) •2 •· 

8.2 a) No, o:=:o is not a •dyadic-indication•. It is a 
•identity-relator•. b) No, the •token• on the right must be > 0. 
c) No, the token must be < 10. d) Yes, if the implementation 
permits o?o as a •dyadic-indicant•. e) No, perhaps the intention 
was D2!:iQ!:i!l 1 = 6, ! = 6o. 

8.3 a) No, o:=:o is not an •operator•. It is an •identity­
relator•. b) No, the •actual-parameter• must possess a routine 
with one or two •parameters•. c) No, o*o is not a •monadic­
operator• [R.3.0.4.a, 4.2.1.f, 4.3.1.c). Think about ox**2c. d) 
Yes. e) DQE (!:~! !!1~. in,t) ~~~2!~ = createc. 

8.4 No, ora ndomo 
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possesses a routine which has no •parameters•. c) •83•. d) Yes. 
e) No, c+c is not an cactual-parameterc. 

8.5 a) One. b) 16 times a sufficient number [R.10.b Step 3, 
10.2.3.i,j, 10.2.4.i,j, 10.2.5.a,b, 10.2.6.b, 
10.2.7.j,k,p,q,r,s, 10.2.10.j,k,:i]. c) 30, [R.10.5.2.2.b, 
10.5.3.2.f, 10.2.0]. d) There is none since this is a •monadic­
operator•. e) No, it is a •co?formity-relator• [R.8.3.2.1.b]. 

8.6 a) Yes, but it cannot be contained in a proper program. 
b) Yes, because the second occurrence of cabsc is that of a 
•monadic-indication•. and does not identify the first. c) In 
order to reinstate the •dyadic-indications• and •operators• of 
the •standard-prelude•. They may have been re-declared. d) Yes 
(R.6 • . 1.2.a, 6.0.2.d Step 1 ). e) Yes [R.6.1.2.a, 6.0.2.d Step 2). 

8.7 a) R.10.2.5.a. b) R.11.11.k. c) R.11.11.i d) 
R.10.2.8.d. e) R.10.2.10.i. 

a) c(£~~! a= sk!£ 
a> O)c. 

QQQ! : a> O)c. b) c(£~~! a= x 

8.9 a) •-1•. b) No, it is an •identity-relation•. c) No, a 
•cast• is not an •operand•. d) Yes. e) •false•. 

8.10 a) No. b) No. c) Yes, try coercing from cinto or from 
OEfOC !n!c. d) Yes. e) No, there is a multiple-definition of 
c-c. 

8.11 a) It draws a straight line of length cdc in the 
directions. b) Try, on, s, e, we. c) 

8.12 a) Remove 2, remove 1. b) Remove 1, remove 3, replace 
1, remove 2, remove 1. c) The •formula• requires that oao should 
be a •variable•. d) Remove 2, remove 1, remove 4, replace 1, 
replace 2, remove 1, remove 3, replace 1, remove 2, remove 1. e) 
Try ceE~.£ upc and ceE~f downc. 

9.1 a) No. b) Yes. c) No [R.8.3.4.1.a]. d) No. e) Yes 
( R.5.1.0.1.bJ. 

9.2 a) Infinitely many. b) Six. c) Two. d) Two. e) 
•virtual, actual• and •formal•. 

9.3 a) No [R.3.0.2.b]. b) Three. c) No, it is a metarule. 
d) Yes. e) No. 

9.4 
say. d) 
• real•. 

a) No [R.1.2.1.m). b) No. c) Yes, 
•real-field-letter-r-letter-e-and• 

•row-of-character•, 
[R.8.5.2.1.a]. e) 

9.5 a) · (I) L: X; y z. (II) N:; Np. (i) s: Nx, yNy, 
NNz. (ii) NpL : N L, L. b) (I) L : X i y ; z. (II) N : p ; N p. 
(i) s: Nx, Ny, Nz. (ii) NpL: NL, L. (iii) pL:. c) (I) L: x 
; y ; z. (II) N : ; pN. (i) s : letter x symbol N, letter y 
symbol N, letter z symbol N. (ii) letter L symbol pH : letter L 

symbol, letter L s 

9.6 a) No. b) 
only •procedure-!! t 
• row-of •• · 

9.7 a) •void-1 
b) •virtual NONSTOI 
FOR!'!• d) •strongly 
ly united to !DID 

10.1 a) No, 
1.1.5.bl. b) No ·, o; 
No, []real .· is · n1 
alrea:ly -specifies ; 
( R.9.2.b). . 

10.2 
Df!=!f ~ VD or Df~f ! 
!!D · contains cg_o wl 
rR.7.1.2.c). c) D!!! 
g~!!> a. d) ostruc 
g!!!!> left operand~ · 
!fi.E!~. E!'!! g!!!!l 
title, £g! QQQ~ neJ 

10.3 a) The fil 
indica tion• and 1 
•virtual-declarer• . 
two are •qlobal-< 
next of a := link : 
ni!c.-e) No [a:6:2 . 

10. 4 a) No. b) 

10. 5 a) If oa c 
• formula• and ~b 
indication•, then-i 
rower•. 

1 0 • 6 a) Yes. b) 
e) Yes. 

10.7 a) Yes. b) 
"jim", n2~! := ln!J 

10.8 a) cleft 
ni!) c. b) BOB. c) • 

10.9 a) In linE 
become of! ; b := f 

10.11 a) DEfQ~ 
ni! I p1 (left of ro 
: print(")") )~:b) 
I: left Qf root .-



•· d) Yes. 

.bstep3, 
10. 2. 6 . b, 

J.5 . 2.2.b, 
•monadic-

2.1.b). 

r program. 
that of a 

t. c) In 
raters• of 

d) Yes 
d Step 2). 

1.11.i d) 

! a = x 

• c) No, a 

or from 
inition of 

o in the 

3, replace 
oac should 
eplace 1, 
move 1. e) 

No. e) Yes 

T vo. e) 

metarul e. 

haracte r•, 
.1 . a]. e) 

Nx, yMy, 
: p ; N P• 

(I) L : X 
1, let t er y 

letter L 
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symbol, letter L symbol N. 

9.6 a) No. b) Yes. c) No. d) No. e) Yes, •NONPROC• excludes 
only •procedure-~OID• or the same preceded by •reference-to• or 
• row-of •• · ,,_ 

9.7 a) •void-cohesion• or •void-confrontation• [R.8.5.0.1). 
b) •virtual NONSTDWED declarer•. c) •firmly dereferenced to MODE: 
FOR!'!• d) •strongly rowed to REFETY row of MODE FORM•. e) •STIRM 
ly united to !10ID FORM•. 

10.1 a) No, crealc is not a •mode-indic:ttion• [R.4.2.1.b, 
1.1.5.b]. b) No ·, ca~-is an •identifier•, not · an •indicant•. c) 
No, [)!:_gal .· is · not an •actual-declarer•. d) Perhaps, if cbo 
alreaily specifies a united modec [R.7:o1.1.cc~ 9.2.b]. e) Yes 
[R.9.2.b]. 

10.2 a) c~.!:f!!~.!:(.E~! .!2 a, .H2£ .!2 d)c b) This is undefined. In 
cref ~ vo or o_Eg.f f~f.!! v = !.2£ fg! _!!D, the •generator• D}Q£ fgf 
~c - contains c~c which is virtual and is therefore not developed 
r R ~ 7 • 1. 2 • C]. C) Dl!!!.!Q!! (!:.gf f2!!~.!:, !:_gf !~!:., . . _!gf · .!.!:i~}g, f~f 
£~!!> c. d) c~!:f!!£.!: (!!!!.!2!! (£~! £2!!~.!, E.g! ·- y~f, !~! .!:EiE.!g, · fgf 
£~!!>left operand, .!!!.!: operator, Y!!iQ!! (£gf £2!!~.!:. fgf !.i!f• f~! 
!:fiE!~. rgf £~!1> right operand) c. e ) D~.!:E!!£.!([1 :0 fle~] £Q~f 
title, rgf .!2.22~ next)c. 

10.3 a) The first is its defining occurrence as a •mode­
indication• and the second is an applied occurrence as a 
•v irtual-declarer•. b) The first i s a •declarer• and the other 
two are •global-generators•. c) Yes. d) c.J:i!!! a := (1, !!i.!l 
next of a := link := (2, nil) ; next of next 2! a := .!i!!! .- (3, 
!!Hc.-e) No [R:6:2.1.f]. --- --

10.4 a) No. b) Yes. c) No. d) Yes. e) Yes. 

10.5 a) If c~c is a •dyadic-indication•, then it is a 
•formula• and cb uc is a ocast•; if o~c is a •mode­
indication•, then-it is a •declaration• and cb :uo is a •row-of­
rower•. 

10.6 a) Yes. b) No. c) D2!:f!!£.!.!! = <i!!!: u, !~f.!! v)c. d) No. 
e) Yes. 

10.7 
11 jim", 

a) Yes. b) D!!2Qg tree : = (n2Q~ 
!!2.1! := (!!!.!. "sam", nil>> o. 

10.8 a) cleft 2! right 
!!i!)c. b) BOB. c) efalse •• d) 

2! tree 
•true•. e ) 

10.9 a) In line 2, insert c~221 b := 
become ofi ; b := !~J:se ; done : be. 

:= (!!!.!, "bob", nil> , 

: -= n.2.Q! : = <nil. "ron", 
efalsea, •true •• 

and 8 

10.11 a) 0!?.£2£: p1 = (~!! !!.2£! root) (print("("); (root:#: 
!!!1 1 p1 (left .2! root) ; print (val 2!. root) ; p1 (right of root)) 
; print(")") )c. b) D2~2f p2 = (!!f !!QQ! root) : (root -:1: !!.!1 
1: left 2f root.-. C!:gf .!!2.1!: n.!.!> ~n.Q right 2! root:=: C.!:g! 
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DQ~! : nil> I print(val Q! root) 
; print{",") ; pt;int(val Qf root) 
root) print(")''))o. 

1 print("~) ; p2(left Qf root) 
; print(",") ; ~(right Q! 

~.2-
10.12 a) Remove oaction (p) o from line 12 and, insert it in 
line 8. 

11.2 a) No, 1,1prin to has only one parameter. b) No, onilo can 
only be hipped, but since it must also be united,--it is 
therefore · in a firm position [R.8.2.4.1.b]. ~ 1 [R.10.5.1.1.f, 
10.5.0.2 Table 1 ]. d) +3. 140000E +0. e) +3.140000E +0. 

11.3 a) Undefined, since the repetitive statement is void 
and therefore cannot be coerced to D£f1B!1I2!D• b) No 
[R.8.2.4.1.b]. c) les, dereference to O£!! !!~1o, unite to 
oin!~E!D and then row it. d) Undefined, since oso cannot be 
coerced to DQY!!lE!D· e) No, cfQf~~!o cannot be coerced to 
c( )f!~~!IE!O• 

11.4 a) ? +5. b) ? ABC. c) Twice dereferenced and then 
united to DEfi!!11:n~!o, ? +3.400000E +0. d) Four and 9 spaces 
left over. e) Nine and 2 spaces left over. f) A B c. 
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